Molecular enhancement of Cu-based catalysts for CO2 electroreduction

被引:3
作者
Luo, Haiqiang [1 ]
Li, Bo [1 ]
Ma, Jian-Gong [1 ]
Cheng, Peng [1 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr,Haihe Lab S, Key Lab Adv Energy Mat Chem,Dept Chem,Frontiers Sc, Tianjin 300071, Peoples R China
关键词
METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYSTS; ETHYLENE; TECHNOLOGIES; STRATEGIES; ELECTRODES; CONVERSION; CAPTURE;
D O I
10.1039/d4cc02619e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical carbon dioxide reduction reaction (eCO(2)RR) represents an effective means of achieving renewable energy storage and a supply of carbon-based raw materials. However, there are still great challenges in selectively producing specific hydrocarbon compounds. The unique ability of the copper (Cu) catalyst to promote proton-coupled electron transfer processes offers clear advantages in generating value-added products. This review presents molecular enhancement strategies for Cu-based catalysts for CO2 electroreduction. We also elucidate the principles of each strategy for enhancing eCO(2)RR performance, discuss the structure-activity relationships, and propose some promising molecular enhancement strategies. This review will provide guidance for the development of organic-inorganic hybrid Cu-based catalysts as high-performance CO2 electroreduction catalysts.
引用
收藏
页码:9298 / 9309
页数:12
相关论文
共 122 条
[1]   Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits [J].
Agar, IT ;
Streif, J ;
Bangerth, F .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 1997, 11 (01) :47-55
[2]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[3]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[4]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[5]  
Bishnupad M., 2022, J ENERGY CHEM, V70, P444
[6]   Direct observation of the local microenvironment in inhomogeneous CO2 reduction gas diffusion electrodes via versatile pOH imaging [J].
Bohme, Annette ;
Bui, Justin C. ;
Fenwick, Aidan Q. ;
Bhide, Rohit ;
Feltenberger, Cassidy N. ;
Welch, Alexandra J. ;
King, Alex J. ;
Bell, Alexis T. ;
Weber, Adam Z. ;
Ardo, Shane ;
Atwater, Harry A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) :1783-1795
[7]   Carbon-carbon coupling in biotransformation [J].
Breuer, M ;
Hauer, B .
CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (06) :570-576
[8]   Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO2 on Cu and Ag [J].
Bui, Justin C. ;
Kim, Chanyeon ;
King, Alex J. ;
Romiluyi, Oyinkansola ;
Kusoglu, Ahmet ;
Weber, Adam Z. ;
Bell, Alexis T. .
ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (04) :484-494
[9]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[10]   Covalent Grafting of Dielectric Films on Cu(111) Surface via Electrochemical Reduction of Aryl Diazonium Salts [J].
Cao, Liang ;
Wu, Yunwen ;
Hang, Tao ;
Li, Ming .
LANGMUIR, 2022, 38 (48) :14969-14980