Annealing reduces Si 3 N 4 microwave-frequency dielectric loss in superconducting resonators

被引:2
作者
Mittal, S. [1 ,2 ,3 ]
Adachi, K. [1 ,2 ,3 ]
Frattini, N. E. [1 ,2 ,3 ]
Urmey, M. D. [1 ,2 ,3 ]
Lin, S-x. [1 ,2 ,3 ]
Emser, A. L. [1 ,2 ,3 ]
Metzger, C. [1 ,2 ,3 ]
Talamo, L. G. [1 ,2 ,3 ]
Dickson, S. [1 ,2 ,3 ]
Carlson, D. [3 ,4 ]
Papp, S. B. [3 ,5 ]
Regal, C. A. [1 ,2 ,3 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] Natl Inst Stand & Technol, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Octave Photon LLC, Boulder, CO 80305 USA
[5] Natl Inst Stand & Technol, Time & Frequency Div, Boulder, CO 80305 USA
来源
PHYSICAL REVIEW APPLIED | 2024年 / 21卷 / 05期
关键词
HYDROGEN CONTENT; DIFFUSION; GLASSES;
D O I
10.1103/PhysRevApplied.21.054044
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dielectric loss of silicon nitride (Si 3 N 4 ) limits the performance of microwave-frequency devices that rely on this material for sensing, signal processing, and quantum communication. Using superconducting resonant circuits, we measure the cryogenic loss tangent of either as-deposited or high -temperature annealed stoichiometric Si 3 N 4 as a function of drive strength and temperature. The internal loss behavior of the electrical resonators is largely consistent with the standard tunneling model of two-level systems (TLSs), including damping caused by resonant energy exchange with TLSs and by the relaxation of nonresonant TLSs. We further supplement the TLS model with a self-heating effect to explain an increase in the loss observed in as-deposited films at large drive powers. Critically, we demonstrate that annealing remedies this anomalous power-induced loss, reduces the relaxation -type damping by more than 2 orders of magnitude, and reduces the resonant -type damping by a factor of 3. Employing infrared absorption spectroscopy, we find that annealing reduces the concentration of hydrogen in Si 3 N 4 , suggesting that hydrogen impurities cause substantial dissipation.
引用
收藏
页数:12
相关论文
共 54 条
[1]   ANOMALOUS LOW-TEMPERATURE THERMAL PROPERTIES OF GLASSES AND SPIN GLASSES [J].
ANDERSON, PW ;
HALPERIN, BI ;
VARMA, CM .
PHILOSOPHICAL MAGAZINE, 1972, 25 (01) :1-&
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
[3]   Dimensional transformation of defect-induced noise, dissipation, and nonlinearity [J].
Behunin, R. O. ;
Intravaia, F. ;
Rakich, P. T. .
PHYSICAL REVIEW B, 2016, 93 (22)
[4]   SPECTRAL DIFFUSION, PHONON ECHOES, AND SATURATION RECOVERY IN GLASSES AT LOW-TEMPERATURES [J].
BLACK, JL ;
HALPERIN, BI .
PHYSICAL REVIEW B, 1977, 16 (06) :2879-2895
[5]   Cavity electromechanics with parametric mechanical driving [J].
Bothner, D. ;
Yanai, S. ;
Iniguez-Rabago, A. ;
Yuan, M. ;
Blanter, Ya M. ;
Steele, G. A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]  
Boyle R., 2022, Application Note
[7]   Optomechanical Ground-State Cooling in a Continuous and Efficient Electro-Optic Transducer [J].
Brubaker, B. M. ;
Kindem, J. M. ;
Urmey, M. D. ;
Mittal, S. ;
Delaney, R. D. ;
Burns, P. S. ;
Vissers, M. R. ;
Lehnert, K. W. ;
Regal, C. A. .
PHYSICAL REVIEW X, 2022, 12 (02)
[8]  
Cannelli G., 1998, Tunneling systems in amorphous and crystalline solids, P389
[9]   Measurement of the Low-Temperature Loss Tangent of High-Resistivity Silicon Using a High-Q Superconducting Resonator [J].
Checchin, M. ;
Frolov, D. ;
Lunin, A. ;
Grassellino, A. ;
Romanenko, A. .
PHYSICAL REVIEW APPLIED, 2022, 18 (03)
[10]   HYDROGEN CONTENT OF A VARIETY OF PLASMA-DEPOSITED SILICON NITRIDES [J].
CHOW, R ;
LANFORD, WA ;
WANG, KM ;
ROSLER, RS .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (08) :5630-5633