V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low-energy nitrogen reduction pathways

被引:17
作者
An, Tae-Yong [1 ]
Xia, Chengkai [2 ]
Je, Minyeong [3 ]
Lee, Hyunjung [1 ]
Ji, Seulgi [3 ]
Kim, Min-Cheol [2 ]
Surendran, Subramani [1 ]
Han, Mi-Kyung [4 ,5 ]
Lim, Jaehyoung [1 ]
Lee, Dong-Kyu [1 ]
Kim, Joon Young [1 ,6 ]
Kim, Tae-Hoon [7 ]
Choi, Heechae [3 ,8 ]
Kim, Jung Kyu [2 ]
Sim, Uk [1 ,6 ]
机构
[1] Korea Inst Energy Technol KENTECH, Hydrogen Energy Technol Lab, 200 Hyeoksin Ro, Naju 58330, Jeonnam, South Korea
[2] Sungkyunkwan Univ SKKU, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, South Korea
[3] Univ Cologne, Inst Inorgan Chem, Mat & Chem Grp, Greinstr 6, D-50939 Cologne, Germany
[4] Chonnam Natl Univ, Alan G MacDiarmid Energy Res Inst, Grad Sch, Dept Polymer Engn, Gwangju, South Korea
[5] Chonnam Natl Univ, Sch Polymer Sci & Engn, Gwangju, South Korea
[6] NEEL Sci, Res Inst, Jeollanamdo, South Korea
[7] Chonnam Natl Univ, Dept Mat Sci & Engn, Gwangju 61186, South Korea
[8] Xian Jiaotong Liverpool Univ, Dept Chem, Suzhou, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 04期
基金
新加坡国家研究基金会;
关键词
coherent heterogeneous interfaces; green ammonia synthesis; hybrid electrocatalyst; low-energy progression; nitrogen reduction reaction (NRR); vanadium oxide/nitride (V2O3/VN); GENERALIZED GRADIENT APPROXIMATION; EVOLUTION REACTION; AMBIENT CONDITIONS; AMMONIA-SYNTHESIS; N-2; REDUCTION; FIXATION; VANADIUM; CATALYSTS; DESIGN; OXIDE;
D O I
10.1002/sus2.226
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical nitrogen reduction reaction (NRR) is a sustainable alternative to the Haber-Bosch process for ammonia (NH3) production. However, the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions. To overcome this challenge, we designed a vanadium oxide/nitride (V2O3/VN) hybrid electrocatalyst in which V2O3 and VN coexist coherently at the heterogeneous interface. Since single-phase V2O3 and VN exhibit different surface catalytic kinetics for NRR, the V2O3/VN hybrid electrocatalyst can provide alternating reaction pathways, selecting a lower energy pathway for each material in the serial NRR pathway. As a result, the ammonia yield of the V2O3/VN hybrid electrocatalyst was 219.6 mu g h(-1) cm(-2), and the Faradaic efficiency was 18.9%, which is much higher than that of single-phase VN, V2O3, and VNxOy solid solution catalysts without heterointerfaces. Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low-energy reaction pathway through the migration and adsorption of intermediate species. Therefore, the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient electrochemical catalysts that induce steps favorable for the efficient low-energy progression of NRR.
引用
收藏
页数:14
相关论文
共 77 条
[1]   Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments [J].
Abghoui, Younes ;
Garden, Anna L. ;
Howat, Jakob G. ;
Vegge, Tejs ;
Skulason, Egill .
ACS CATALYSIS, 2016, 6 (02) :635-646
[2]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[3]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[4]   Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation [J].
Cao, Na ;
Chen, Zheng ;
Zang, Ketao ;
Xu, Jie ;
Zhong, Jun ;
Luo, Jun ;
Xu, Xin ;
Zheng, Gengfeng .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Tuning transition metal atoms embedded in N6 cavity structure toward efficient electrocatalytic ammonia synthesis [J].
Cao, Rong ;
Xia, Jiezhen ;
Wu, Qi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 54 :1047-1055
[6]   A vanadium-nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media [J].
Chang, Bin ;
Deng, Lequan ;
Wang, Shouzhi ;
Shi, Dong ;
Ai, Zizheng ;
Jiang, Hehe ;
Shao, Yongliang ;
Zhang, Lei ;
Shen, Jianxing ;
Wu, Yongzhong ;
Hao, Xiaopeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) :91-96
[7]   Strategic design of VO2 encased in N-doped carbon as an efficient electrocatalyst for the nitrogen reduction reaction in neutral and acidic media [J].
Chhetri, Ashis ;
Biswas, Ashmita ;
Podder, Sumana ;
Dey, Ramendra Sundar ;
Mitra, Joyee .
NANOSCALE, 2024, 16 (19) :9426-9435
[8]   Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline [J].
Choi, Changhyeok ;
Back, Seoin ;
Kim, Na-Young ;
Lim, Juhyung ;
Kim, Yong-Hyun ;
Jung, Yousung .
ACS CATALYSIS, 2018, 8 (08) :7517-7525
[9]   Identification and elimination of false positives in electrochemical nitrogen reduction studies [J].
Choi, Jaecheol ;
Suryanto, Bryan H. R. ;
Wang, Dabin ;
Du, Hoang-Long ;
Hodgetts, Rebecca Y. ;
Vallana, Federico M. Ferrero ;
MacFarlane, Douglas R. ;
Simonov, Alexandr N. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Interfacial Engineering of Ni/V2O3 Heterostructure Catalyst for Boosting Hydrogen Oxidation Reaction in Alkaline Electrolytes [J].
Duan, Yu ;
Zhang, Xiao-Long ;
Gao, Fei-Yue ;
Kong, Yuan ;
Duan, Ying ;
Yang, Xiao-Tu ;
Yu, Xing-Xing ;
Wang, Yan-Ru ;
Qin, Shuai ;
Chen, Zhi ;
Wu, Rui ;
Yang, Peng-Peng ;
Zheng, Xu-Sheng ;
Zhu, Jun-Fa ;
Gao, Min-Rui ;
Lu, Tong-Bu ;
Yu, Zi-You ;
Yu, Shu-Hong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (10)