Discovery of antimicrobial peptides in the global microbiome with machine learning

被引:57
|
作者
Santos-Junior, Celio Dias [1 ,2 ]
Torres, Marcelo D. T. [3 ,4 ,5 ,6 ,7 ,8 ]
Duan, Yiqian [1 ]
del Rio, Alvaro Rodriguez [9 ]
Schmidt, Thomas S. B. [10 ,11 ,12 ]
Chong, Hui [1 ]
Fullam, Anthony [10 ]
Kuhn, Michael [10 ]
Zhu, Chengkai [1 ]
Houseman, Amy [1 ]
Somborski, Jelena [1 ]
Vines, Anna [1 ]
Zhao, Xing-Ming [1 ,15 ,16 ,17 ,18 ]
Bork, Peer [10 ,13 ,14 ]
Huerta-Cepas, Jaime [9 ]
de la Fuente-Nunez, Cesar [3 ,4 ,5 ,6 ,7 ,8 ]
Coelho, Luis Pedro [1 ,19 ]
机构
[1] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence IST, Shanghai 200433, Peoples R China
[2] Univ Fed Sao Carlos UFSCar, Dept Hydrobiol, Lab Microbial Proc & Biodivers LMPB, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Penn, Machine Biol Grp, Dept Psychiat, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[4] Univ Penn, Machine Biol Grp, Dept Microbiol, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[6] Univ Penn, Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[7] Univ Penn, Sch Arts & Sci, Dept Chem, Philadelphia, PA 19104 USA
[8] Univ Penn, Penn Inst Computat Sci, Philadelphia, PA 19104 USA
[9] Univ Politecn Madrid UPM, Ctr Biotecnol & Genom Plantas, Inst Nacl Invest & Tecnol Agr & Alimentaria INIA C, Campus Montegancedo UPM, Pozuelo De Alarcon 28223, Madrid, Spain
[10] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[11] Univ Coll Cork, APC Microbiome, Cork, Ireland
[12] Univ Coll Cork, Sch Med, Cork, Ireland
[13] Max Delbruck Ctr Mol Med, Berlin, Germany
[14] Univ Wurzburg, Dept Bioinformat, Bioctr, Wurzburg, Germany
[15] Fudan Univ, Zhongshan Hosp, Dept Neurol, Shanghai, Peoples R China
[16] Fudan Univ, Inst Brain Sci, State Key Lab Med Neurobiol, Shanghai, Peoples R China
[17] Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
[18] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[19] Queensland Univ Technol, Translat Res Inst, Ctr Microbiome Res, Sch Biomed Sci, Woolloongabba, Qld, Australia
基金
澳大利亚研究理事会; 国家重点研发计划; 美国国家卫生研究院; 中国国家自然科学基金;
关键词
AMINO-ACID ALPHABETS; AKKERMANSIA-MUCINIPHILA; GUT MICROBIOME; SMALL PROTEINS; GENERATION; REVEALS; RESISTANCE; GENES; IDENTIFICATION; BACTERIOCINS;
D O I
10.1016/j.cell.2024.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machinelearning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 nonredundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo . A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
引用
收藏
页码:3761 / 3778.e16
页数:35
相关论文
共 50 条
  • [31] Applications of machine learning in drug discovery and development
    Vamathevan, Jessica
    Clark, Dominic
    Czodrowski, Paul
    Dunham, Ian
    Ferran, Edgardo
    Lee, George
    Li, Bin
    Madabhushi, Anant
    Shah, Parantu
    Spitzer, Michaela
    Zhao, Shanrong
    NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (06) : 463 - 477
  • [32] Survey of Machine Learning Techniques in Drug Discovery
    Stephenson, Natalie
    Shane, Emily
    Chase, Jessica
    Rowland, Jason
    Ries, David
    Justice, Nicola
    Zhang, Jie
    Chan, Leong
    Cao, Renzhi
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 185 - 193
  • [33] Applications of Machine Learning in Drug Target Discovery
    Gao, Dongrui
    Chen, Qingyuan
    Zeng, Yuanqi
    Jiang, Meng
    Zhang, Yongqing
    CURRENT DRUG METABOLISM, 2020, 21 (10) : 790 - 803
  • [34] The evolution of antimicrobial peptides in Chiroptera
    Castellanos, Francisco X.
    Moreno-Santillan, Diana
    Hughes, Graham M.
    Paulat, Nicole S.
    Sipperly, Nicolette
    Brown, Alexis M.
    Martin, Katherine R.
    Poterewicz, Gregory M.
    Lim, Marisa C. W.
    Russell, Amy L.
    Moore, Marianne S.
    Johnson, Matthew G.
    Corthals, Angelique P.
    Ray, David A.
    Davalos, Liliana M.
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [35] Identification of Novel Antibacterial Peptides by Chemoinformatics and Machine Learning
    Fjell, Christopher D.
    Jenssen, Havard
    Hilpert, Kai
    Cheung, Warren A.
    Pante, Nelly
    Hancock, Robert E. W.
    Cherkasov, Artem
    JOURNAL OF MEDICINAL CHEMISTRY, 2009, 52 (07) : 2006 - 2015
  • [36] Microbiome-derived antimicrobial peptides offer therapeutic solutions for the treatment of Pseudomonas aeruginosa infections
    Mulkern, Adam J.
    Oyama, Linda B.
    Cookson, Alan R.
    Creevey, Christopher J.
    Wilkinson, Toby J.
    Olleik, Hamza
    Maresca, Marc
    da Silva, Giarla C.
    Fontes, Patricia P.
    Bazzolli, Denise M. S.
    Mantovani, Hilario C.
    Damaris, Bamu F.
    Mur, Luis A. J.
    Huws, Sharon A.
    NPJ BIOFILMS AND MICROBIOMES, 2022, 8 (01)
  • [37] Antimicrobial peptides
    Malmsten, Martin
    UPSALA JOURNAL OF MEDICAL SCIENCES, 2014, 119 (02) : 199 - 204
  • [38] Best practices for machine learning in antibody discovery and development
    Wossnig, Leonard
    Furtmann, Norbert
    Buchanan, Andrew
    Kumar, Sandeep
    Greiff, Victor
    DRUG DISCOVERY TODAY, 2024, 29 (07)
  • [39] Antimicrobial resistance and machine learning: past, present, and future
    Farhat, Faiza
    Athar, Md Tanwir
    Ahmad, Sultan
    Madsen, Dag Oivind
    Sohail, Shahab Saquib
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [40] Editorial: Machine learning approaches to antimicrobials: discovery and resistance
    Broschat, Shira L.
    Siu, Shirley W. I.
    de la Fuente-Nunez, Cesar
    FRONTIERS IN BIOINFORMATICS, 2024, 4