Discovery of antimicrobial peptides in the global microbiome with machine learning

被引:57
|
作者
Santos-Junior, Celio Dias [1 ,2 ]
Torres, Marcelo D. T. [3 ,4 ,5 ,6 ,7 ,8 ]
Duan, Yiqian [1 ]
del Rio, Alvaro Rodriguez [9 ]
Schmidt, Thomas S. B. [10 ,11 ,12 ]
Chong, Hui [1 ]
Fullam, Anthony [10 ]
Kuhn, Michael [10 ]
Zhu, Chengkai [1 ]
Houseman, Amy [1 ]
Somborski, Jelena [1 ]
Vines, Anna [1 ]
Zhao, Xing-Ming [1 ,15 ,16 ,17 ,18 ]
Bork, Peer [10 ,13 ,14 ]
Huerta-Cepas, Jaime [9 ]
de la Fuente-Nunez, Cesar [3 ,4 ,5 ,6 ,7 ,8 ]
Coelho, Luis Pedro [1 ,19 ]
机构
[1] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence IST, Shanghai 200433, Peoples R China
[2] Univ Fed Sao Carlos UFSCar, Dept Hydrobiol, Lab Microbial Proc & Biodivers LMPB, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Penn, Machine Biol Grp, Dept Psychiat, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[4] Univ Penn, Machine Biol Grp, Dept Microbiol, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[6] Univ Penn, Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[7] Univ Penn, Sch Arts & Sci, Dept Chem, Philadelphia, PA 19104 USA
[8] Univ Penn, Penn Inst Computat Sci, Philadelphia, PA 19104 USA
[9] Univ Politecn Madrid UPM, Ctr Biotecnol & Genom Plantas, Inst Nacl Invest & Tecnol Agr & Alimentaria INIA C, Campus Montegancedo UPM, Pozuelo De Alarcon 28223, Madrid, Spain
[10] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[11] Univ Coll Cork, APC Microbiome, Cork, Ireland
[12] Univ Coll Cork, Sch Med, Cork, Ireland
[13] Max Delbruck Ctr Mol Med, Berlin, Germany
[14] Univ Wurzburg, Dept Bioinformat, Bioctr, Wurzburg, Germany
[15] Fudan Univ, Zhongshan Hosp, Dept Neurol, Shanghai, Peoples R China
[16] Fudan Univ, Inst Brain Sci, State Key Lab Med Neurobiol, Shanghai, Peoples R China
[17] Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
[18] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[19] Queensland Univ Technol, Translat Res Inst, Ctr Microbiome Res, Sch Biomed Sci, Woolloongabba, Qld, Australia
基金
澳大利亚研究理事会; 国家重点研发计划; 美国国家卫生研究院; 中国国家自然科学基金;
关键词
AMINO-ACID ALPHABETS; AKKERMANSIA-MUCINIPHILA; GUT MICROBIOME; SMALL PROTEINS; GENERATION; REVEALS; RESISTANCE; GENES; IDENTIFICATION; BACTERIOCINS;
D O I
10.1016/j.cell.2024.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machinelearning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 nonredundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo . A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
引用
收藏
页码:3761 / 3778.e16
页数:35
相关论文
共 50 条
  • [21] Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
    Liu, Yaoliang
    Zhu, Jinlin
    Wang, Hongchao
    Lu, Wenwei
    Lee, Yuan Kun
    Zhao, Jianxin
    Zhang, Hao
    BMC GENOMICS, 2022, 23 (01)
  • [22] AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens
    Li, Chenkai
    Sutherland, Darcy
    Hammond, S. Austin
    Yang, Chen
    Taho, Figali
    Bergman, Lauren
    Houston, Simon
    Warren, Rene L.
    Wong, Titus
    Hoang, Linda M. N.
    Cameron, Caroline E.
    Helbing, Caren C.
    Birol, Inanc
    BMC GENOMICS, 2022, 23 (01)
  • [23] Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
    Yaoliang Liu
    Jinlin Zhu
    Hongchao Wang
    Wenwei Lu
    Yuan Kun LEE
    Jianxin Zhao
    Hao Zhang
    BMC Genomics, 23
  • [24] Advancements in artificial intelligence and machine learning in revolutionising biomarker discovery
    Raikar, Gokuldas Sarvesh
    Raikar, Amisha Sarvesh
    Somnache, Sandesh Narayan
    BRAZILIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 59
  • [25] Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra
    King, Andrew M.
    Zhang, Zhengan
    Glassey, Emerson
    Siuti, Piro
    Clardy, Jon
    Voigt, Christopher A.
    NATURE MICROBIOLOGY, 2023, 8 (12) : 2420 - +
  • [26] Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences
    Huang, Junjie
    Xu, Yanchao
    Xue, Yunfan
    Huang, Yue
    Li, Xu
    Chen, Xiaohui
    Xu, Yao
    Zhang, Dongxiang
    Zhang, Peng
    Zhao, Junbo
    Ji, Jian
    NATURE BIOMEDICAL ENGINEERING, 2023, 7 (06) : 797 - +
  • [27] Deep Learning for Antimicrobial Peptides: Computational Models and Databases
    Zhou, Xiangrun
    Liu, Guixia
    Cao, Shuyuan
    Lv, Ji
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1708 - 1717
  • [28] Predicting drug-microbiome interactions with machine learning
    McCoubrey, Laura E.
    Gaisford, Simon
    Orlu, Mine
    Basit, Abdul W.
    BIOTECHNOLOGY ADVANCES, 2022, 54
  • [29] Machine learning for data integration in human gut microbiome
    Peishun Li
    Hao Luo
    Boyang Ji
    Jens Nielsen
    Microbial Cell Factories, 21
  • [30] From machine learning to deep learning: progress in machine intelligence for rational drug discovery
    Zhang, Lu
    Tan, Jianjun
    Han, Dan
    Zhu, Hao
    DRUG DISCOVERY TODAY, 2017, 22 (11) : 1680 - 1685