Discovery of antimicrobial peptides in the global microbiome with machine learning

被引:57
|
作者
Santos-Junior, Celio Dias [1 ,2 ]
Torres, Marcelo D. T. [3 ,4 ,5 ,6 ,7 ,8 ]
Duan, Yiqian [1 ]
del Rio, Alvaro Rodriguez [9 ]
Schmidt, Thomas S. B. [10 ,11 ,12 ]
Chong, Hui [1 ]
Fullam, Anthony [10 ]
Kuhn, Michael [10 ]
Zhu, Chengkai [1 ]
Houseman, Amy [1 ]
Somborski, Jelena [1 ]
Vines, Anna [1 ]
Zhao, Xing-Ming [1 ,15 ,16 ,17 ,18 ]
Bork, Peer [10 ,13 ,14 ]
Huerta-Cepas, Jaime [9 ]
de la Fuente-Nunez, Cesar [3 ,4 ,5 ,6 ,7 ,8 ]
Coelho, Luis Pedro [1 ,19 ]
机构
[1] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence IST, Shanghai 200433, Peoples R China
[2] Univ Fed Sao Carlos UFSCar, Dept Hydrobiol, Lab Microbial Proc & Biodivers LMPB, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Penn, Machine Biol Grp, Dept Psychiat, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[4] Univ Penn, Machine Biol Grp, Dept Microbiol, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[6] Univ Penn, Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[7] Univ Penn, Sch Arts & Sci, Dept Chem, Philadelphia, PA 19104 USA
[8] Univ Penn, Penn Inst Computat Sci, Philadelphia, PA 19104 USA
[9] Univ Politecn Madrid UPM, Ctr Biotecnol & Genom Plantas, Inst Nacl Invest & Tecnol Agr & Alimentaria INIA C, Campus Montegancedo UPM, Pozuelo De Alarcon 28223, Madrid, Spain
[10] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[11] Univ Coll Cork, APC Microbiome, Cork, Ireland
[12] Univ Coll Cork, Sch Med, Cork, Ireland
[13] Max Delbruck Ctr Mol Med, Berlin, Germany
[14] Univ Wurzburg, Dept Bioinformat, Bioctr, Wurzburg, Germany
[15] Fudan Univ, Zhongshan Hosp, Dept Neurol, Shanghai, Peoples R China
[16] Fudan Univ, Inst Brain Sci, State Key Lab Med Neurobiol, Shanghai, Peoples R China
[17] Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
[18] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[19] Queensland Univ Technol, Translat Res Inst, Ctr Microbiome Res, Sch Biomed Sci, Woolloongabba, Qld, Australia
基金
澳大利亚研究理事会; 国家重点研发计划; 美国国家卫生研究院; 中国国家自然科学基金;
关键词
AMINO-ACID ALPHABETS; AKKERMANSIA-MUCINIPHILA; GUT MICROBIOME; SMALL PROTEINS; GENERATION; REVEALS; RESISTANCE; GENES; IDENTIFICATION; BACTERIOCINS;
D O I
10.1016/j.cell.2024.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machinelearning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 nonredundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo . A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
引用
收藏
页码:3761 / 3778.e16
页数:35
相关论文
共 50 条
  • [1] Using Evolutionary Algorithms and Machine Learning to Explore Sequence Space for the Discovery of Antimicrobial Peptides
    Yoshida, Mari
    Hinkley, Trevor
    Tsuda, Soichiro
    Abul-Haija, Yousef M.
    McBurney, Roy T.
    Kulikov, Vladislav
    Mathieson, Jennifer S.
    Reyes, Sabrina Galinanes
    Castro, Maria D.
    Cronin, Leroy
    CHEM, 2018, 4 (03): : 533 - 543
  • [2] Antimicrobial Peptides in the Global Microbiome: Biosynthetic Genes and Resistance Determinants
    Chen, Bingfeng
    Zhang, Zhenyan
    Zhang, Qi
    Xu, Nuohan
    Lu, Tao
    Wang, Tingzhang
    Hong, Wenjie
    Fu, Zhengwei
    Penuelas, Josep
    Gillings, Michael
    Qian, Haifeng
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (20) : 7698 - 7708
  • [3] Machine Learning in the Rational Design of Antimicrobial Peptides
    Rondon-Villarreal, Paola
    Sierra, Daniel A.
    Torres, Rodrigo
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2014, 10 (03) : 183 - 190
  • [4] Methodology for biomarker discovery with reproducibility in microbiome data using machine learning
    Rojas-Velazquez, David
    Kidwai, Sarah
    Kraneveld, Aletta D.
    Tonda, Alberto
    Oberski, Daniel
    Garssen, Johan
    Lopez-Rincon, Alejandro
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [5] A review on the screening methods for the discovery of natural antimicrobial peptides
    Yang, Bin
    Yang, Hongyan
    Liang, Jianlong
    Chen, Jiarou
    Wang, Chunhua
    Wang, Yuanyuan
    Wang, Jincai
    Luo, Wenhui
    Deng, Tao
    Guo, Jialiang
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2025, 15 (01)
  • [6] Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains
    Fields, Francisco R.
    Freed, Stefan D.
    Carothers, Katelyn E.
    Hamid, Md Nafiz
    Hammers, Daniel E.
    Ross, Jessica N.
    Kalwajtys, Veronica R.
    Gonzalez, Alejandro J.
    Hildreth, Andrew D.
    Friedberg, Iddo
    Lee, Shaun W.
    DRUG DEVELOPMENT RESEARCH, 2020, 81 (01) : 43 - 51
  • [7] Machine learning-enabled discovery and design of membrane-active peptides
    Lee, Ernest Y.
    Wong, Gerard C. L.
    Ferguson, Andrew L.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (10) : 2708 - 2718
  • [8] CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides
    Bournez, Colin
    Riool, Martijn
    de Boer, Leonie
    Cordfunke, Robert A.
    de Best, Leonie
    van Leeuwen, Remko
    Drijfhout, Jan Wouter
    Zaat, Sebastian A. J.
    van Westen, Gerard J. P.
    ANTIBIOTICS-BASEL, 2023, 12 (04):
  • [9] Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning
    Maasch, Jacqueline R. M. A.
    Torres, Marcelo D. T.
    Melo, Marcelo C. R.
    de la Fuente-Nunez, Cesar
    CELL HOST & MICROBE, 2023, 31 (08) : 1260 - 1274.e6
  • [10] Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides
    Boone, Kyle
    Wisdom, Cate
    Camarda, Kyle
    Spencer, Paulette
    Tamerler, Candan
    BMC BIOINFORMATICS, 2021, 22 (01)