Robust Variational Physics-Informed Neural Networks

被引:7
作者
Rojas, Sergio [1 ]
Maczuga, Pawel [2 ]
Munoz-Matute, Judit [3 ,4 ]
Pardo, David [3 ,5 ,6 ]
Paszynski, Maciej [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Valparaiso, Chile
[2] AGH Univ Krakow, Krakow, Poland
[3] Basque Ctr Appl Math BCAM, Bilbao, Spain
[4] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX USA
[5] Univ Basque Country UPV EHU, Bilbao, Spain
[6] Ikerbasque, Bilbao, Spain
关键词
Robustness; Variational Physics-Informed Neural Networks; Petrov-Galerkin formulation; Riesz representation; Minimum residual principle; A posteriori error estimation; SYSTEM LEAST-SQUARES; DPG METHOD; FRAMEWORK; STOKES;
D O I
10.1016/j.cma.2024.116904
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov-Galerkintype variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN's loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection-diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [2] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [3] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [4] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [5] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [6] Towards physics-informed neural networks for landslide prediction
    Dahal, Ashok
    Lombardo, Luigi
    ENGINEERING GEOLOGY, 2025, 344
  • [7] Physics-informed neural networks for acoustic boundary admittance estimation
    Schmid, Johannes D.
    Bauerschmidt, Philipp
    Gurbuz, Caglar
    Eser, Martin
    Marburg, Steffen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [8] Learning Specialized Activation Functions for Physics-Informed Neural Networks
    Wang, Honghui
    Lu, Lu
    Song, Shiji
    Huang, Gao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (04) : 869 - 906
  • [9] Splines Parameterization of Planar Domains by Physics-Informed Neural Networks
    Falini, Antonella
    D'Inverno, Giuseppe Alessio
    Sampoli, Maria Lucia
    Mazzia, Francesca
    MATHEMATICS, 2023, 11 (10)
  • [10] Physics-informed neural networks for an optimal counterdiabatic quantum computation
    Ferrer-Sanchez, Antonio
    Flores-Garrigos, Carlos
    Hernani-Morales, Carlos
    Orquin-Marques, Jose J.
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Montalban, Iraitz
    Solano, Enrique
    Vives-Gilabert, Yolanda
    Martin-Guerrero, Jose D.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):