Mathematical modeling of dispersed CO2 dissolution in ionic liquids: Application to carbon capture

被引:3
|
作者
Amin, Parsa [1 ]
Memarian, Alireza [2 ]
Repo, Eveliina [1 ]
Andersson, Martin [4 ]
Mansouri, Seyed Soheil [5 ]
Zendehboudi, Sohrab [3 ]
Rezaei, Nima [1 ]
机构
[1] LUT Univ, LUT Sch Engn Sci, POB 20, Lappeenranta 53850, Finland
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
[3] Mem Univ, Dept Proc Engn, St John, NF, Canada
[4] King Fahd Univ Petr & Minerals, Ctr Integrat Petr Res, Dhahran, Saudi Arabia
[5] Tech Univ Denmark, Dept Chem & Biochem Engn, Lyngby, Denmark
关键词
Carbon capture; Ionic liquids; Sparging; CFD modelling; Computer-aided design; CO2; CAPTURE; PRE-COMBUSTION; SOLUBILITY; DENSITY; TRICYANOMETHANIDE; DIFFUSIVITY; COMPOSITE; MIXTURES; PRESSURE; SYSTEMS;
D O I
10.1016/j.molliq.2024.124486
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develope a 2D computational fluid dynamic (CFD) model in COMSOL Multiphysics (R) to investigate CO2 absorption in an ionic liquid ([Bmim][TCM]). Factors such as pressure (1-20 bar), temperature (278-330 K), inlet gas velocity (0.0001-1 ms(-1) ), sparger radius to column diameter ratio (0.1-0.5), and column height to diameter ratio (1-3) are investigated. A quadratic model for absorption behavior (p-value < 0.0001 and R-2 > 0.98) is developed. Four sparger geometries are considered, and the optimal values for column height to diameter and sparger radius to column diameter are estimated. The maximum CO2 concentration is obtained at a pressure of 18.26 bar, temperature of 309.5 K, velocity of 0.825 ms(-1) , the sparger radius to column diameter of 0.414, and column height to diameter of 2.5.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Ionic liquids and biomass as carbon precursors: Synergistically answering a call for CO2 capture and conversion
    Stanton Ribeiro, Mónica
    Zanatta, Marcileia
    Corvo, Marta C.
    Fuel, 2022, 327
  • [42] CO2 capture by task specific ionic liquids (TSILs) and polymerized ionic liquids (PILs and AAPILs)
    Shahrom, Maisara Shahrom Raja
    Wilfred, Cecilia Devi
    Taha, AboBakr Khidir Ziyada
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 219 : 306 - 312
  • [43] Functionalized ionic liquids for CO2 capture under ambient pressure
    Zhao, Hua
    Baker, Gary A.
    GREEN CHEMISTRY LETTERS AND REVIEWS, 2023, 16 (01)
  • [44] Choline-based ionic liquids for CO2 capture and conversion
    Li, Ruipeng
    Zhao, Yanfei
    Li, Zhiyong
    Wu, Yunyan
    Wang, Jianji
    Liu, Zhimin
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (02) : 256 - 261
  • [45] Electrolysis enhanced capture of CO2 by MEA in hydroxylated ionic liquids
    Huang, Qing
    Jin, Xianbo
    Chen, George Z.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [46] Impact of water on CO2 capture by amino acid ionic liquids
    McDonald, Jonathan L.
    Sykora, Richard E.
    Hixon, Paul
    Mirjafari, Arsalan
    Davis, James H., Jr.
    ENVIRONMENTAL CHEMISTRY LETTERS, 2014, 12 (01) : 201 - 208
  • [47] Phase-Change Ionic Liquids for Postcombustion CO2 Capture
    Seo, Samuel
    Simoni, Luke D.
    Ma, Mengting
    DeSilva, M. Aruni
    Huang, Yong
    Stadtherr, Mark A.
    Brennecke, Joan F.
    ENERGY & FUELS, 2014, 28 (09) : 5968 - 5977
  • [48] CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods
    Torralba-Calleja, Elena
    Skinner, James
    Gutierrez-Tauste, David
    JOURNAL OF CHEMISTRY, 2013, 2013
  • [49] Impact of water on CO2 capture by amino acid ionic liquids
    Jonathan L. McDonald
    Richard E. Sykora
    Paul Hixon
    Arsalan Mirjafari
    James H. Davis
    Environmental Chemistry Letters, 2014, 12 : 201 - 208
  • [50] Current status of CO2 capture with ionic liquids: Development and progress
    Elmobarak, Wamda Faisal
    Almomani, Fares
    Tawalbeh, Muhammad
    Al-Othman, Amani
    Martis, Remston
    Rasool, Kashif
    FUEL, 2023, 344