Semi-Automated Data Labeling

被引:0
作者
Desmond, Michael [1 ]
Duesterwald, Evelyn [1 ]
Brimijoin, Kristina [1 ]
Brachman, Michelle [1 ]
Pan, Qian [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
来源
NEURIPS 2020 COMPETITION AND DEMONSTRATION TRACK, VOL 133 | 2020年 / 133卷
关键词
Data Labeling; Human Computer Interaction; Interactive Machine Learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Labeling data is often a tedious and error-prone activity. However, organizing the labeling experience as a human-machine collaboration has the potential to improve label quality and reduce human effort. In this paper we describe a semi-automated data labeling system which employs a predictive model to guide and assist the human labeler. The model learns by observing labeling decisions, and is used to recommend labels and automate basic functions in the labeling interface. Agreement between the labeler and the model is tracked and presented via a system of checkpoints. At each checkpoint the labeler has the opportunity to delegate the remainder of the labeling task to the model.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 27 条
[1]   Power to the People: The Role of Humans in Interactive Machine Learning [J].
Amershi, Saleema ;
Cakmak, Maya ;
Knox, W. Bradley ;
Kulesza, Todd .
AI MAGAZINE, 2014, 35 (04) :105-120
[2]   Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning [J].
Arazo, Eric ;
Ortego, Diego ;
Albert, Paul ;
O'Connor, Noel E. ;
McGuinness, Kevin .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[3]   eXplainable Cooperative Machine Learning with NOVA [J].
Baur, Tobias ;
Heimerl, Alexander ;
Lingenfelser, Florian ;
Wagner, Johannes ;
Valstar, Michel F. ;
Schuller, Bjoern ;
Andre, Elisabeth .
KUNSTLICHE INTELLIGENZ, 2020, 34 (02) :143-164
[4]   Semi-automatic data annotation guided by feature space projection [J].
Benato, Barbara C. ;
Gomes, Jancarlo F. ;
Telea, Alexandru C. ;
Falcao, Alexandre X. .
PATTERN RECOGNITION, 2021, 109 (109)
[5]  
Cer D, 2018, Arxiv, DOI arXiv:1803.11175
[6]  
Chapelle O., 2005, P 10 INT WORKSH ART, P57
[7]   And Now for Something Completely Different: Improving Crowdsourcing Workflows with Micro-Diversions [J].
Dai, Peng ;
Rzeszotarski, Jeffrey M. ;
Paritosh, Praveen ;
Chi, Ed H. .
PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'15), 2015, :628-638
[8]   Increasing the Speed and Accuracy of Data Labeling Through an AI Assisted Interface [J].
Desmond, Michael ;
Muller, Michael ;
Ashktorab, Zahra ;
Dugan, Casey ;
Duesterwald, Evelyn ;
Brimijoin, Kristina ;
Finegan-Dollak, Catherine ;
Brachman, Michelle ;
Sharma, Aabhas ;
Joshi, Narendra Nath ;
Pan, Qian .
IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2021, :392-401
[9]   A Review of User Interface Design for Interactive Machine Learning [J].
Dudley, John J. ;
Kristensson, Per Ola .
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2018, 8 (02)
[10]  
Fang M, 2017, Arxiv, DOI [arXiv:1708.02383, 10.48550/arXiv.1708.02383]