Conformal and Non-Minimal Couplings in Fractional Cosmology

被引:3
作者
Marroquin, Kevin [1 ]
Leon, Genly [1 ,2 ]
Millano, Alfredo D. [1 ]
Michea, Claudio [3 ]
Paliathanasis, Andronikos [1 ,2 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Ave Angamos 0610,Casilla 1280, Antofagasta 1270709, Chile
[2] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
[3] Univ Catolica Norte, Dept Fis, Ave Angamos 0610,Casilla 1280, Antofagasta 1270709, Chile
关键词
fractional calculus; dynamical systems; asymptotic solutions; cosmology; OBSERVATIONAL CONSTRAINTS; LAGRANGIAN FORMULATION; DIFFUSION; DYNAMICS; CALCULUS; DERIVATIVES; DISPERSION; FIELDS;
D O I
10.3390/fractalfract8050253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional differential calculus is a mathematical tool that has found applications in the study of social and physical behaviors considered "anomalous". It is often used when traditional integer derivatives models fail to represent cases where the power law is observed accurately. Fractional calculus must reflect non-local, frequency- and history-dependent properties of power-law phenomena. This tool has various important applications, such as fractional mass conservation, electrochemical analysis, groundwater flow problems, and fractional spatiotemporal diffusion equations. It can also be used in cosmology to explain late-time cosmic acceleration without the need for dark energy. We review some models using fractional differential equations. We look at the Einstein-Hilbert action, which is based on a fractional derivative action, and add a scalar field, phi, to create a non-minimal interaction theory with the coupling, xi R phi 2, between gravity and the scalar field, where xi is the interaction constant. By employing various mathematical approaches, we can offer precise schemes to find analytical and numerical approximations of the solutions. Moreover, we comprehensively study the modified cosmological equations and analyze the solution space using the theory of dynamical systems and asymptotic expansion methods. This enables us to provide a qualitative description of cosmologies with a scalar field based on fractional calculus formalism.
引用
收藏
页数:67
相关论文
共 111 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions
[2]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[4]  
[Anonymous], 2016, The fractional trigonometry: With applications to fractional differential equations and science
[5]   A q-deformation of the Bogoliubov transformations [J].
Arraut, Ivan ;
Segovia, Carlos .
PHYSICS LETTERS A, 2018, 382 (07) :464-466
[6]   Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation [J].
Atangana, Abdon ;
Vermeulen, P. D. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[7]   On the Generalized Mass Transport Equation to the Concept of Variable Fractional Derivative [J].
Atangana, Abdon ;
Kilicman, Adem .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
[8]   The Use of Fractional Order Derivative to Predict the Groundwater Flow [J].
Atangana, Abdon ;
Bildik, Necdet .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[9]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[10]   A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives [J].
Baleanu, Dumitru ;
Trujillo, Juan I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (05) :1111-1115