Production of liquid hydrocarbon fuels through catalytic cracking of high and low-density polyethylene medical wastes using fly ash as a catalyst

被引:4
作者
Premkumar, P. [1 ]
Saravanan, C. G. [1 ]
Nalluri, Premdasu [2 ]
Seeman, M. [3 ]
Vikneswaran, M. [4 ]
Madheswaran, Dinesh Kumar [5 ]
Josephin, J. S. Femilda [6 ,7 ]
Chinnathambi, Arunachalam [8 ]
Pugazhendhi, Arivalagan [9 ,10 ]
Varuvel, Edwin Geo [5 ,11 ]
机构
[1] Annamalai Univ, Dept Mech Engn, Chidambaram 608002, Tamil Nadu, India
[2] Gudlavalleru Engn Coll, Dept Mech Engn, Gudlavalleru 521356, Andhra Pradesh, India
[3] Annamalai Univ, Dept Mfg Engn, Chidambaram 608002, Tamil Nadu, India
[4] SRM Inst Sci & Technol, Dept Mech Engn, Chennai 600089, Tamil Nadu, India
[5] SRM Inst Sci & Technol, Green Vehicle Technol Res Ctr, Dept Automobile Engn, Kattankulathur 603203, Tamil Nadu, India
[6] Istinye Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye
[7] Saveetha Inst Med & Tech Sci, Inst Automobile Engn, Saveetha Sch Engn, Dept Autotron, Chennai 602105, Tamil Nadu, India
[8] King Saud Univ, Coll Sci, Dept Bot & Microbiol, POB 2455, Riyadh 11451, Saudi Arabia
[9] Lebanese Amer Univ, Sch Engn, Byblos, Lebanon
[10] Chettinad Acad Res & Educ, Chettinad Hosp & Res Inst, Ctr Herbal Pharmacol & Environm Sustainabil, Kelambakkam 603103, Tamil Nadu, India
[11] Istinye Univ, Fac Engn & Nat Sci, Dept Mech Engn, Istanbul, Turkiye
关键词
Catalytic degradation; Liquid hydrocarbon fuels; High -Density Polyethylene (HDPE); Low -Density Polyethylene (LDPE); Fly ash catalyst; PLASTIC WASTE; CONVERSION; PYROLYSIS; DEGRADATION; QUANTIFICATION; POLYPROPYLENE; PERSPECTIVE; COAL;
D O I
10.1016/j.psep.2024.04.145
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study explores the potential of converting High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) waste into liquid hydrocarbon fuels through catalytic degradation using fly ash. It achieves significant conversion rates, with HDPE reaching over 95% total conversion and a 66.4% oil yield at a catalyst-to-polymer ratio of 0.20, while LDPE shows a 100% conversion rate at ratios of 0.15 and 0.20. The process not only yields hydrocarbons with decreasing density and increasing calorific values, up to 55 MJ/kg for HDPE and 47 MJ/kg for LDPE at optimal conditions but also produces fractions with properties similar to diesel, notably in terms of density and viscosity. The flashpoint and fire point values further affirm these products' potential as viable fuel sources, aligning closely with diesel standards. 1H NMR spectroscopy analysis reveals a composition rich in longchain alkanes and alkenes, indicating the efficient transformation of plastic waste into valuable energy resources. This research presents a promising avenue for recycling plastic waste into alternative fuels, highlighting a sustainable approach to waste management and energy recovery.
引用
收藏
页码:459 / 470
页数:12
相关论文
共 61 条
  • [21] From plastic waste to wealth using chemical recycling: A review
    Jiang, Jie
    Shi, Ke
    Zhang, Xiangnan
    Yu, Kai
    Zhang, Hong
    He, Jing
    Ju, Yun
    Liu, Jilin
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (01):
  • [22] Catalytic cracking of polypropylene using aluminosilicate catalysts
    Jiraroj, Duangkamon
    Chaipurimat, Arisara
    Kerdsa, Narumol
    Hannongbua, Supot
    Tungasmita, Duangamol Nuntasri
    [J]. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 120 : 529 - 539
  • [23] Conversion of low-density polyethylene plastic waste into valuable fuels using fly ash as a catalyst
    Khan, Asif
    Iqbal, Naseem
    Noor, Tayyaba
    Zaman, Neelam
    Khan, Shoaib Raza
    [J]. SUSTAINABLE ENERGY & FUELS, 2023, 7 (19) : 4935 - 4954
  • [24] Pyrolytic conversion of automotive bumper polywaste to diesel like fuel and its utilization in compression ignition engine
    Kiran, S.
    Varuvel, E. G.
    [J]. FUEL, 2022, 318
  • [25] Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management
    Sahoo P.K.
    Kim K.
    Powell M.A.
    Equeenuddin S.M.
    [J]. International Journal of Coal Science and Technology, 2016, 3 (03): : 267 - 283
  • [26] Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic
    Kunwar, Bidhya
    Moser, Bryan R.
    Chandrasekaran, Sriraam R.
    Rajagopalan, Nandakishore
    Sharma, Brajendra K.
    [J]. ENERGY, 2016, 111 : 884 - 892
  • [27] Nonviable carbon neutrality with plastic waste-to-energy
    Kwon, Serang
    Kang, Jieun
    Lee, Beomhui
    Hong, Soonwook
    Jeon, Yongseok
    Bak, Moonsoo
    Im, Seong-kyun
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (07) : 3074 - 3087
  • [28] Evaluating scenarios toward zero plastic pollution
    Lau, Winnie W. Y.
    Shiran, Yonathan
    Bailey, Richard M.
    Cook, Ed
    Stuchtey, Martin R.
    Koskella, Julia
    Velis, Costas A.
    Godfrey, Linda
    Boucher, Julien
    Murphy, Margaret B.
    Thompson, Richard C.
    Jankowska, Emilia
    Castillo, Arturo Castillo
    Pilditch, Toby D.
    Dixon, Ben
    Koerselman, Laura
    Kosior, Edward
    Favoino, Enzo
    Gutberlet, Jutta
    Baulch, Sarah
    Atreya, Meera E.
    Fischer, David
    He, Kevin K.
    Petit, Milan M.
    Sumaila, U. Rashid
    Neil, Emily
    Bernhofen, Mark, V
    Lawrence, Keith
    Palardy, James E.
    [J]. SCIENCE, 2020, 369 (6510) : 1455 - +
  • [29] Recent advances in the gasification of waste plastics. A critical overview
    Lopez, Gartzen
    Artetxe, Maite
    Amutio, Maider
    Alvarez, Jon
    Bilbao, Javier
    Olazar, Martin
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 576 - 596
  • [30] Catalytic processing of plastic waste on the rise
    Martin, Antonio J.
    Mondelli, Cecilia
    Jaydev, Shibashish D.
    Perez-Ramirez, Javier
    [J]. CHEM, 2021, 7 (06): : 1487 - 1533