Preparation and electrochemical performance of cellulose-based biomass-derived carbon materials

被引:0
|
作者
Zhang, Xuemin [1 ,2 ,3 ]
He, Guanyu [1 ,2 ,3 ]
Sun, Huan [1 ,2 ,3 ]
Cui, Wenqiang [1 ,2 ,3 ]
Song, Hongbin [1 ,2 ,3 ]
Li, Jinping [1 ,2 ,3 ]
Zheng, Jian [1 ,2 ,3 ]
机构
[1] Key Lab Multisupply Syst Solar Energy & Biomass, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
[3] Collaborat Innovat Ctr Supporting Technol Northwes, Nanyang, Peoples R China
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2024年 / 19卷 / 07期
关键词
Biomass-derived carbon materials; Corn stalk; Chemical activation; Structural characteristics; Electrochemical performance; ACTIVATED CARBON; ELECTRODE MATERIAL; FUNCTIONAL-GROUPS; SUPERCAPACITORS; CAPACITANCE; PYROLYSIS; GRAPHENE; GREEN;
D O I
10.1016/j.ijoes.2024.100617
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Biomass-derived carbon materials are regarded as an ideal precursor for activated carbon owing to their unique structure, widely used in energy storage applications. Porous biomass carbon materials were prepared by hightemperature carbonization and activation methods using corn stalk stem pith as the carbon source. The structures and morphology of biomass-derived carbon materials were also characterized and analyzed, and it was employed as the electrode material to study the electrochemical properties. The results showed that the specific surface area and pore volume increased with the increase of temperature under the action of the same activator. The activation degree of carbon materials by different activators showed obvious differences under the same temperature conditions, and the structure and properties of the carbon materials obtained by sodium hydroxide activation were better than those obtained by sodium bicarbonate activation. When the temperature was fixed at 900 degree celsius, the carbon materials obtained by sodium hydroxide activation showed the best structural characteristics and electrochemical properties, with the specific surface area up to 532.881 m(2).g(-1) and the microporous volume accounting for 76.266 % of the total pore volume. By cyclic voltammetry test, the specific capacity was 139 F.g(-1) at a scan rate of 10 mV.s(-1), and the electrochemical impedance was much smaller than the impedance of the product obtained by sodium bicarbonate activation. Meanwhile, the specific capacity remained basically unchanged after 1000 cycles of charging and discharging, with excellent cycling stability and electrochemical performance. The relevant results provide a new way for the efficient utilization and functionalization of biomass resources.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Preparation of biomass-based porous carbon derived from waste ginger slices and its electrochemical performance
    Li Liangshuo
    Qin Lin
    Li Xinyu
    Deng Ming
    Fan Xin
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2020, 14 (11-12): : 548 - 555
  • [22] Biomass-Derived Carbon Materials for Electrochemical Sensing: Recent Advances and Future Perspectives
    Zhang, Haopeng
    Sun, Huaze
    Huang, Shuo
    Lan, Jingming
    Li, Haiyang
    Yue, Hongyan
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2024,
  • [23] Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes
    Xiangyang Zhou
    Hongcheng Li
    Juan Yang
    Journal of Energy Chemistry , 2016, (01) : 35 - 40
  • [24] Biomass-derived carbon materials for high-performance supercapacitor electrodes
    Ruan, Changping
    Ai, Kelong
    Lu, Lehui
    RSC ADVANCES, 2014, 4 (58): : 30887 - 30895
  • [25] Biomass-derived carbon materials for organic transformations
    Li Q.
    Song T.
    Yang Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (04): : 1966 - 1982
  • [26] Biomass-Derived Porous Carbon Materials for Electrocatalysis
    Lv, Yaokang
    Huang, Lin
    Chen, Chao
    Cai, Zhiwei
    Ruhlmann, Laurent
    CHEMISTRYSELECT, 2024, 9 (28):
  • [27] Preparation of Nitrogen Doped Carbon Materials and Analysis of Their Electrochemical Performance
    Yuan, Yue
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (08):
  • [28] Preparation and performance comparison of cellulose-based activated carbon fibres
    Hina, Kanza
    Zou, Hantao
    Qian, Wu
    Zuo, Danying
    Yi, Changhai
    CELLULOSE, 2018, 25 (01) : 607 - 617
  • [29] Preparation and performance comparison of cellulose-based activated carbon fibres
    Kanza Hina
    Hantao Zou
    Wu Qian
    Danying Zuo
    Changhai Yi
    Cellulose, 2018, 25 : 607 - 617
  • [30] Advances in biomass-derived electrode materials for energy storage and circular carbon economy
    Park, Sohyun
    Song, Jinju
    Jang, Suhyeon
    Lee, Jeongmi
    Kim, Jaekook
    Kim, Hyun-Kyung
    Min, Kyoungseon
    CHEMICAL ENGINEERING JOURNAL, 2023, 470