A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling

被引:0
作者
Fetit, Ahmed E. [1 ]
Alansary, Amir [1 ]
Cordero-Grande, Lucilio [1 ]
Cupitt, John [1 ]
Davidson, Alice B. [2 ]
Edwards, A. David [2 ]
Hajnal, Joseph V. [2 ]
Hughes, Emer [2 ]
Kamnitsas, Konstantinos [1 ]
Kyriakopoulou, Vanessa [2 ]
Makropoulos, Antonios [1 ]
Patkee, Prachi A. [2 ]
Price, Anthony N. [2 ]
Rutherford, Mary A. [2 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
[2] Kings Coll London, Div Imaging Sci & Biomed Engn, Ctr Dev Brain, London SE1 7EH, England
来源
MEDICAL IMAGING WITH DEEP LEARNING, VOL 121 | 2020年 / 121卷
基金
欧洲研究理事会;
关键词
Fetal; developing; brain; cortex; gray matter; 3D segmentation; deep learning; ATLAS-BASED SEGMENTATION; AUTOMATIC SEGMENTATION; IMAGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We developed an automated system based on deep neural networks for fast and sensitive 3D image segmentation of cortical gray matter from fetal brain MRI. The lack of extensive/publicly available annotations presented a key challenge, as large amounts of labeled data are typically required for training sensitive models with deep learning. To address this, we: (i) generated preliminary tissue labels using the Draw-EM algorithm, which uses Expectation-Maximization and was originally designed for tissue segmentation in the neonatal domain; and (ii) employed a human-in-the-loop approach, whereby an expert fetal imaging annotator assessed and refined the performance of the model. By using a hybrid approach that combined automatically generated labels with manual refinements by an expert, we amplified the utility of ground truth annotations while immensely reducing their cost (283 slices). The deep learning system was developed, refined, and validated on 249 3D T2-weighted scans obtained from the Developing Human Connectome Project's fetal cohort, acquired at 3T. Analysis of the system showed that it is invariant to gestational age at scan, as it generalized well to a wide age range (21 - 38 weeks) despite variations in cortical morphology and intensity across the fetal distribution. It was also found to be invariant to intensities in regions surrounding the brain (amniotic fluid), which often present a major obstacle to the processing of neuroimaging data in the fetal domain.
引用
收藏
页码:241 / 261
页数:21
相关论文
共 41 条
[1]   Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging [J].
Anbeek, Petronella ;
Vincken, Koen L. ;
Groenendaal, Floris ;
Koeman, Annemieke ;
Van Osch, Matthias J. P. ;
Van der Grond, Jeroen .
PEDIATRIC RESEARCH, 2008, 63 (02) :158-163
[2]   Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI [J].
Anbeek, Petronella ;
Isgum, Ivana ;
van Kooiji, Britt J. M. ;
Moi, Christian P. ;
Kersbergen, Karina J. ;
Groenendaal, Floris ;
Viergever, Max A. ;
de Vries, Linda S. ;
Benders, Manon J. N. L. .
PLOS ONE, 2013, 8 (12)
[3]  
[Anonymous], 2012, MICCAI Grand Challenge: Neonatal Brain Segmentation 2012
[4]   Development of cortical microstructure in the preterm human brain [J].
Ball, Gareth ;
Srinivasan, Latha ;
Aljabar, Paul ;
Counsell, Serena J. ;
Durighel, Giuliana ;
Hajnal, Joseph V. ;
Rutherford, Mary A. ;
Edwards, A. David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (23) :9541-9546
[5]   Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project [J].
Bastiani, Matteo ;
Andersson, Jesper L. R. ;
Cordero-Grande, Lucilio ;
Murgasova, Maria ;
Hutter, Jana ;
Price, Anthony N. ;
Makropoulos, Antonios ;
Fitzgibbon, Sean P. ;
Hughes, Emer ;
Rueckert, Daniel ;
Victor, Suresh ;
Rutherford, Mary ;
Edwards, A. David ;
Smith, Stephen M. ;
Tournier, Jacques-Donald ;
Hajnal, Joseph V. ;
Jbabdi, Saad ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2019, 185 :750-763
[6]   Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation [J].
Beare, Richard J. ;
Chen, Jian ;
Kelly, Claire E. ;
Alexopoulos, Dimitrios ;
Smyser, Christopher D. ;
Rogers, Cynthia E. ;
Loh, Wai Y. ;
Matthews, Lillian G. ;
Cheong, Jeanie L. Y. ;
Spittle, Alicia J. ;
Anderson, Peter J. ;
Doyle, Lex W. ;
Inder, Terrie E. ;
Seal, Marc L. ;
Thompson, Deanne K. .
FRONTIERS IN NEUROINFORMATICS, 2016, 10
[7]   Automatic segmentation of the preterm neonatal brain with MRI using supervised classification [J].
Chita, Sabina M. ;
Benders, Manon ;
Moeskops, Pim ;
Kersbergen, Karina J. ;
Viergever, Max A. ;
Isgum, Ivana .
MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
[8]  
Cordero-grande L, 2019, Automating fetal brain reconstruction using distance regression learning, P3
[9]  
Dittrich Eva, 2011, P MICCAI 2011 WORKSH
[10]   Emergence of resting state networks in the preterm human brain [J].
Doria, Valentina ;
Beckmann, Christian F. ;
Arichi, Tomoki ;
Merchant, Nazakat ;
Groppo, Michela ;
Turkheimer, Federico E. ;
Counsell, Serena J. ;
Murgasova, Maria ;
Aljabar, Paul ;
Nunes, Rita G. ;
Larkman, David J. ;
Rees, Geraint ;
Edwards, A. David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (46) :20015-20020