Secure and Efficient Blockchain-Based Federated Learning Approach for VANETs

被引:5
|
作者
Asad, Muhammad [1 ]
Shaukat, Saima [1 ]
Javanmardi, Ehsan [1 ]
Nakazato, Jin [1 ]
Bao, Naren [1 ]
Tsukada, Manabu [1 ]
机构
[1] Univ Tokyo, Dept Creat Informat, Bunkyo 1130033, Japan
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 05期
关键词
Servers; Data models; Data communication; Blockchains; Security; Training; Data privacy; Blockchain; communication efficiency; federated learning (FL); privacy preservation; vehicular network;
D O I
10.1109/JIOT.2023.3322221
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid increase in the number of connected vehicles on roads has made vehicular ad-hoc networks (VANETs) an attractive target for malicious actors. As a result, VANETs require secure data transmission to maintain the network's integrity. Federated learning (FL) has been proposed as a secure data-sharing method for VANETs, but it is limited in its ability to protect sensitive data. This article proposes integrating Blockchain technology into FL to provide an additional layer of security for VANETs. In particular, we propose a secure and efficient blockchain-based FL (SEBFL) approach to ensure communication efficiency and data privacy in VANETs. To this end, we use the FL model for VANETs, where computation tasks are decomposed from a base station to individual vehicles. This effectively reduces the congestion delay and communication overhead. Integrating blockchain with the FL model provides a reliable and secure data communication system between vehicles, roadside units, and a cloud server. Additionally, we use a homomorphic encryption system (HES) that effectively preserves the confidentiality and credibility of vehicles. Besides, the proposed SEBFL leverages the asynchronous FL model, minimizing the long delay while avoiding possible threats and attacks using HES. The experimental results show that the proposed SEBFL achieves 0.87% accuracy while a model inversion attack and 0.86% accuracy while a membership inference attack.
引用
收藏
页码:9047 / 9055
页数:9
相关论文
共 50 条
  • [1] BASS: A Blockchain-Based Asynchronous SignSGD Architecture for Efficient and Secure Federated Learning
    Xu, Chenhao
    Ge, Jiaqi
    Deng, Yao
    Gao, Longxiang
    Zhang, Mengshi
    Li, Yong
    Zhou, Wanlei
    Zheng, Xi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5388 - 5402
  • [2] A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems
    Zhang, Cheng
    Xu, Yang
    Elahi, Haroon
    Zhang, Deyu
    Tan, Yunlin
    Chen, Junxian
    Zhang, Yaoxue
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6574 - 6585
  • [3] BPS-FL: Blockchain-Based Privacy-Preserving and Secure Federated Learning
    Yu, Jianping
    Yao, Hang
    Ouyang, Kai
    Cao, Xiaojun
    Zhang, Lianming
    BIG DATA MINING AND ANALYTICS, 2025, 8 (01): : 189 - 213
  • [4] ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment
    Chen, Biwen
    Zeng, Honghong
    Xiang, Tao
    Guo, Shangwei
    Zhang, Tianwei
    Liu, Yang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 761 - 774
  • [5] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [6] A Framework to Design Efficent Blockchain-Based Decentralized Federated Learning Architectures
    Formery, Yannis
    Mendiboure, Leo
    Villain, Jonathan
    Deniau, Virginie
    Gransart, Christophe
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 705 - 723
  • [7] Blockchain-Based Swarm Learning for the Mitigation of Gradient Leakage in Federated Learning
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IEEE ACCESS, 2023, 11 : 16549 - 16556
  • [8] A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus
    Li, Yuzheng
    Chen, Chuan
    Liu, Nan
    Huang, Huawei
    Zheng, Zibin
    Yan, Qiang
    IEEE NETWORK, 2021, 35 (01): : 234 - 241
  • [9] Blockchain-Based Personalized Federated Learning for Internet of Medical Things
    Lian, Zhuotao
    Wang, Weizheng
    Han, Zhaoyang
    Su, Chunhua
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 694 - 702
  • [10] Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things
    Zhang, Jiaxiang
    Liu, Yiming
    Qin, Xiaoqi
    Xu, Xiaodong
    Zhang, Ping
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (12) : 10621 - 10635