Machine learning-assisted high-throughput screening of MOFs for efficient adsorption and separation of CF 4 /N 2
被引:7
|
作者:
Xu, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South AfricaUniv South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South Africa
Xu, Hong
[1
]
Mguni, Liberty L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South AfricaUniv South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South Africa
Mguni, Liberty L.
[1
]
Yao, Yali
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South AfricaUniv South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South Africa
Yao, Yali
[1
]
论文数: 引用数:
h-index:
机构:
Hildebrandt, Diane
[2
]
论文数: 引用数:
h-index:
机构:
Jewell, Linda L.
[3
]
论文数: 引用数:
h-index:
机构:
Liu, Xinying
[1
]
机构:
[1] Univ South Africa UNISA, Inst Catalysis & Energy Solut, Muckleneuk, South Africa
[2] Rutgers State Univ, Sch Engn, Dept Chem & Biochem Engn, Piscataway, NJ 08855 USA
[3] Univ South Africa, Dept Chem Engn, ZA-1710 Johannesburg, South Africa
There is an imperative need for top-performing materials with extraordinary adsorption selectivity and working capacity, in order to achieve productive adsorption of CF4 in a CF4/N-2 mixture. In this work, the High-Throughput Grand Canonical Monte Carlo (HT-GCMC) simulation method and the Machine Learning (ML) method were employed to predict and screen the adsorption performance of 10 143 computation-ready experimental metal-organic frameworks (CoRE-MOFs) for separating CF4/N-2 mixed gas. Through computational simulation and ML prediction, 15 and 73 highly promising adsorbents were selected out of the 690 randomly sampled MOFs and the CoRE-MOFs database. The selection process was based on criteria that balanced favorable CF4 selectivity, working capacity, and regenerability: selectivity >60, working capacity >70 mg g(-1) (0.8 mmol g(-1)) and regenerability >70%. The maximum observed capacity of the 15 top evaluated metal-organic frameworks (MOFs) was: 52.85 mg g(-1) (0.6 mmol g(-1)) at 1 bar; and 204.90 mg g(-1) (2.3 mmol g(-1)) at 10 bar. The maximum working capacity was 152.06 mg g(-1) (1.7 mmol g(-1)) and the highest selectivity reached was 118.12 (YEGCUJ) and 101.80 (VEHLIE) at 1 bar and 10 bar, respectively. Notably, the most promising MOFs exhibited elevated Zn content relative to the overall MOF population and also possessed a significant nitrogen content. This result should serve as a compelling motivation to further investigate the utilisation of MOFs with a high Zn content (e. g. zeolitic imidazolate frameworks), for enhanced adsorption applications.
机构:
Nanoworld Discovery Studio, Apex, NC 27523 USA
Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
Nanoworld Discovery Studio, Apex, NC 27523 USANanoworld Discovery Studio, Apex, NC 27523 USA
Peng, Xuan
Wang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
China Agr Bank, Res & Dev Ctr, Beijing 100073, Peoples R ChinaNanoworld Discovery Studio, Apex, NC 27523 USA
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Li, Wei
Liang, Tiangui
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Liang, Tiangui
Lin, Yuanchuang
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Lin, Yuanchuang
Wu, Weixiong
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Wu, Weixiong
Li, Song
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
机构:
Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
Cai Chengzhi
Li Lifeng
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
Li Lifeng
Deng Xiaomei
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
Deng Xiaomei
Li Shuhua
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
Li Shuhua
Liang Hong
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
Liang Hong
Qiao Zhiwei
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China