Numerical simulation of soot and NO formation in DME/gasoline laminar co-flow diffusion flames

被引:2
|
作者
Zheng, Shu [1 ]
Lv, Zichen [1 ]
Yang, Yu [1 ]
Liu, Hao [1 ]
Lu, Qiang [1 ]
机构
[1] North China Elect Power Univ, Natl Engn Res Ctr New Energy Power Generat, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
DME/gasoline diffusion flames; Soot formation; Soot oxidation; NO formation; DIMETHYL ETHER DME; PAH; FUEL; COMBUSTION; ETHANOL;
D O I
10.1016/j.fuel.2024.131783
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Dimethyl ether (DME) is regarded as a promising alternative fuel to reduce greenhouse gases and soot emission. However, the application of DME in actual engines is difficult because of its low calorific value and viscosity. DME is commonly utilized as a supplementary component in traditional fuels to enhance their combustion efficiency and emission performance. This study investigated the effect of DME blending on the soot and NO formation in laminar diffusion gasoline flames. The results showed that the peak soot volume fraction (SVF) reduced by 12.3 %, while the peak temperature increased by 19.2 K and the peak concentration of NO increased by 18.2 % when the blending ratio of DME increased from 0 % to 15 %. The primary reason for the reduction in the soot inception rate was the decrease in benzo(ghi)fluoranthene (BGHIF) concentration. The formation of BGHIF was controlled by the C 6 H 5 CH 3 -> A1 -> A1- -> A1C 2 H -> A2R5 -> A2 -> A2- -> BGHIF pathways. The decrease of initial soot particles led to a reduction in Hydrogen Abstraction Carbon Addition (HACA) surface growth rate. The increase in A4 concentration was due to the increase in the concentration of C 4 H 2 in the reaction A2R5 + C 4 H 2 = A4. Therefore, more benzo[a]pyrene (BAPYR) was formed through A4 + C 4 H 2 = BAPYR, promoted the process of soot condensation. The increase in OH concentration promoted the oxidation of OH, and the decrease in soot inhibited the oxidation of O 2 . The majority of NO was primarily produced through the NO thermal pathway in the DME/gasoline flame, and N + OH = NO + H was the main reaction to form NO. The increase of O, H and OH radicals caused the increase in NO concentration.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effects of oxygen on soot formation in laminar co-flow flames of binary mixtures of ethane, DME, and oxygen
    Serwin, Marek
    Karatas, Ahmet E.
    COMBUSTION AND FLAME, 2021, 229
  • [2] Influence of pressure on near nozzle flow field and soot formation in laminar co-flow diffusion flames
    Mansouri, Amin
    Eaves, Nick A.
    Thomson, Murray J.
    Dworkin, Seth B.
    COMBUSTION THEORY AND MODELLING, 2019, 23 (03) : 536 - 548
  • [3] Experimental and numerical study of soot formation and evolution in co-flow laminar partially premixed flames
    De Falco, Gianluigi
    Sirignano, Mariano
    Commodo, Mario
    Merotto, Laura
    Migliorini, Francesca
    Donde, Roberto
    De Iuliis, Silvana
    Minutolo, Patrizia
    D'Anna, Andrea
    FUEL, 2018, 220 : 396 - 402
  • [4] Effect of oxygen-rich combustion on soot formation in laminar co-flow propane diffusion flames
    Chu, Huaqiang
    Yan, Yan
    Xiang, Longkai
    Han, Weiwei
    Ren, Fei
    Peng, Licheng
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (02) : 822 - 832
  • [5] Experimental and numerical research on the effects of pressure and CO2 dilution on soot formation in laminar co-flow methane/air diffusion flames
    Zhou, Yinggui
    Zhang, Pengxiang
    Wang, Shengfu
    Cai, Jie
    Xi, Jianfei
    RSC ADVANCES, 2024, 14 (41) : 30260 - 30271
  • [6] Soot formation in concentric Co-flow ethylene/propane/air diffusion flames
    Lee, W
    Nam, YW
    COMBUSTION SCIENCE AND TECHNOLOGY IN ASIA-PACIFIC AREA: TODAY AND TOMORROW, 2003, : 397 - 400
  • [7] Experimental and numerical study of variable oxygen index effects on soot yield and distribution in laminar co-flow diffusion flames
    Jain, Abhishek
    Das, Dhrubajyoti D.
    McEnally, Charles S.
    Pfefferle, Lisa D.
    Xuan, Yuan
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (01) : 859 - 867
  • [8] Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames
    Jin, Hanfeng
    Guo, Junjun
    Li, Tianyu
    Zhou, Zhongyue
    Im, Hong G.
    Farooq, Aamir
    FUEL, 2021, 289
  • [9] Study of effects of ammonia addition on soot formation characteristics in n-heptane co-flow laminar diffusion flames
    Cheng, Xiaobei
    Li, Yu
    Xu, Yishu
    Liu, Yang
    Wang, Bowen
    COMBUSTION AND FLAME, 2022, 235
  • [10] Experimental and numerical study of soot formation in laminar coflow diffusion flames of gasoline/ethanol blends
    Khosousi, Ali
    Liu, Fengshan
    Dworkin, Seth B.
    Eaves, Nick A.
    Thomson, Murray J.
    He, Xu
    Dai, Yujie
    Gao, Yongli
    Liu, Fushui
    Shuai, Shijin
    Wang, Jianxin
    COMBUSTION AND FLAME, 2015, 162 (10) : 3925 - 3933