Effect of Growth Time on Structural and Optical Properties of Chemically Synthesized TiO2 Nanostructures

被引:0
作者
Paul, Payal [1 ]
Sharma, Dewakar [1 ]
Biswas, Joydeep [2 ]
Misra, Kamakhya Prakash [3 ]
Kabi, Sanjib [1 ]
Chattopadhyay, Saikat [3 ]
机构
[1] SMU, Sikkim Manipal Inst Technol, Dept Phys, Gangtok 737136, Sikkim, India
[2] SMU, Sikkim Manipal Inst Technol, Dept Chem, Gangtok 737136, Sikkim, India
[3] Manipal Univ Jaipur, Sch Basic Sci, Dept Phys, Jaipur 303007, Rajasthan, India
关键词
TiO2; nanostructures; Sol-gel synthesis; band gap; structural parameters; ANATASE TIO2; SOLAR-CELLS;
D O I
10.2174/0115734137306442240630051459
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: Titanium Dioxide (TiO2) is popular in the scientific community due to its wide variety of applications in optoelectronic devices, solar cells, gas sensors, photocatalytic reagents, and the biomedical industry. It is a wide band gap semiconductor with a band gap of 3.2eV. Usually, it shows three different phases, like anatase, rutile, and brookite, based on the synthesis method and annealing temperature. Method: Here, we report a simple chemical process to synthesize TiO2 nanostructures (NSs) at low temperatures to study the impact of growth time on structural and morphological properties. During synthesis, we permitted the samples to grow for 5 hr (sample-T5) and 7 hr (sample-T7) and continued the stirring process accordingly. We performed XRD, UV-Vis, and FESEM analysis with the samples. Result: XRD confirmed the effect of growth time on the size of the structures, and a shift in the absorption edge was observed in UV-Vis spectra, which indicated a change in the band gap. FESEM confirmed the change in nanostructures' size in both samples. Conclusion: The tuning in band gap due to growth time variation may be an interesting phenomenon to explore for modern scientific applications.
引用
收藏
页码:868 / 873
页数:6
相关论文
共 32 条
[1]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[2]   INVESTIGATIONS OF TIO2 FILMS DEPOSITED BY DIFFERENT TECHNIQUES [J].
BANGE, K ;
OTTERMANN, CR ;
ANDERSON, O ;
JESCHKOWSKI, U ;
LAUBE, M ;
FEILE, R .
THIN SOLID FILMS, 1991, 197 (1-2) :279-285
[3]   History of titanium dioxide regulation as a food additive: a review [J].
Boutillier, Sophie ;
Fourmentin, Sophie ;
Laperche, Blandine .
ENVIRONMENTAL CHEMISTRY LETTERS, 2022, 20 (02) :1017-1033
[4]   TIO2 PIGMENT TECHNOLOGY - A REVIEW [J].
BRAUN, JH ;
BAIDINS, A ;
MARGANSKI, RE .
PROGRESS IN ORGANIC COATINGS, 1992, 20 (02) :105-138
[5]   Systematic study on the effect of Ag doping in shaping the magnetic properties of sol-gel derived TiO2 nanoparticles [J].
Dey, Deepal ;
Halder, Nilanjan ;
Misra, Kamakhya Prakash ;
Chattopadhyay, Saikat ;
Jain, Sushil Kumar ;
Bera, Parthasarathi ;
Kumar, Nishant ;
Mukhopadhyay, Anoop Kumar .
CERAMICS INTERNATIONAL, 2020, 46 (17) :27832-27848
[6]   Design and analysis of a novel tunable optical filter [J].
Eliahou-Niv, S ;
Dahan, R ;
Golan, G .
MICROELECTRONICS JOURNAL, 2006, 37 (04) :302-307
[7]   Electrons in nanostructured TiO2 solar cells:: transport, recombination and photovoltaic properties [J].
Frank, AJ ;
Kopidakis, N ;
van de Lagemaat, J .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1165-1179
[8]   Sol-gel processed TiO2 films for photovoltaic applications [J].
Grätzel, M .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2001, 22 (1-2) :7-13
[9]   Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications [J].
Jaroenworaluck, A ;
Sunsaneeyametha, W ;
Kosachan, N ;
Stevens, R .
SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) :473-477
[10]  
LAI YK, 2016, INT J NANOMED, V11, P4819, DOI DOI 10.2147/IJN.S108847