Recovery of dislocation cell structures in 316L stainless steel manufactured by selective laser melting

被引:4
|
作者
Fan, Jinming [1 ]
Zhu, Yueyue [1 ]
Wang, Weiyi [2 ]
Chen, Ke [1 ]
Godfrey, Andrew [2 ]
Yu, Tianbo [4 ]
Huang, Xiaoxu [1 ,3 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Int Joint Lab Light Alloys MOE, Chongqing 400044, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Lab Adv Mat MOE, Beijing 100084, Peoples R China
[3] Chongqing Univ, Shenyang Natl Lab Mat Sci, Chongqing 400044, Peoples R China
[4] Tech Univ Denmark, Dept Civil & Mech Engn, DK-2800 Lyngby, Denmark
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 30卷
基金
中国国家自然科学基金;
关键词
Selective laser melting; 316L stainless steel; Recovery; Dislocation cell structure; Segregation network; KINETICS; ALLOY; MODEL;
D O I
10.1016/j.jmrt.2024.05.269
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the recovery mechanism associated with the dislocation cell structure in 316L austenitic stainless steel produced by selective laser melting (SLM), as well as the role played by the accompanying segregation network, is crucial for tailoring the microstructures and mechanical properties of SLM-prepared components. In the present work, the evolution of the dislocation cells was investigated during isothermal annealing, and a recovery mechanism for the dislocation cell structure was proposed based on a combination of microstructural observations and recovery kinetics analysis. The results show that the high-density dislocations at the cell boundaries annihilate during prolonged annealing at 800 degrees C, resulting in the decomposition of the dislocation cells. The recovery kinetics analysis reveals that SLM-prepared 316L exhibits a lower recovery rate and requires significantly higher apparent activation energy during annealing compared to conventional 316L deformed by cold rolling. The segregation network plays an important role during the dislocation recovery process, which limits the dislocation reaction occurring within the cell boundaries at the early stage of recovery, impedes the dislocation motion after the decomposition of dislocation cells, and leads to a strong temperature dependence of recovery kinetics in SLM-prepared 316L.
引用
收藏
页码:9472 / 9480
页数:9
相关论文
共 50 条
  • [31] Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique
    Alsalla, Hamza
    Hao, Liang
    Smith, Christopher
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 669 : 1 - 6
  • [32] Acoustic Properties of 316L Stainless Steel Lattice Structures Fabricated via Selective Laser Melting
    Sun, Xiaojing
    Jiang, Fengchun
    Wang, Jiandong
    METALS, 2020, 10 (01)
  • [33] Effect of TaC on microstructure and mechanical properties of 316L stainless steel by selective laser melting
    Meng, Xiangwei
    Yan, Junxia
    Ou, Bingxian
    He, Qing
    Zhang, Yuwei
    Fang, Shupeng
    MATERIALS CHARACTERIZATION, 2023, 202
  • [34] Selective laser melting of 316L stainless steel: porosity dependence on geometric feature size
    Porter, Quinton
    Du, Wenchao
    Ma, Chao
    MANUFACTURING LETTERS, 2024, 41 : 895 - 898
  • [35] Properties of 316L Stainless Steel Formed by Dual-Laser Selective Melting
    Fan, Shengjie
    Yang, Yongqiang
    Song, Changhui
    Liu, Zibin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (16):
  • [36] The Compressive Behavior of a Porous 316L Stainless Steel Prepared by Selective Laser Melting
    Liu, B.
    Zhao, Z. Y.
    Bai, P. K.
    Liang, M. J.
    Guan, R. G.
    LASERS IN ENGINEERING, 2019, 42 (4-6) : 381 - 390
  • [37] Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting
    Wang, Chao
    Lin, Xin
    Wang, Lilin
    Zhang, Shuya
    Huang, Weidong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 815
  • [38] SELECTIVE LASER MELTING OF STAINLESS STEEL 316L FOR MECHANICAL PROPERTY-GRADATION
    Parikh, Yash
    Kuttolamadom, Mathew
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 1, 2021,
  • [39] Effects of Powder Characteristics on Selective Laser Melting of 316L Stainless Steel Powder
    Zhang, Sheng
    Wei, Qingsong
    Lin, Guangke
    Zhao, Xiao
    Shi, Yusheng
    MANUFACTURING PROCESS TECHNOLOGY, PTS 1-5, 2011, 189-193 : 3664 - 3667
  • [40] Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting
    Yusuf, Shahir Mohd
    Chen, Yifei
    Boardman, Richard
    Yang, Shoufeng
    Gao, Nong
    METALS, 2017, 7 (02):