On a class of self-similar sets which contain finitely many common points

被引:0
作者
Jiang, Kan [1 ]
Kong, Derong [2 ]
Li, Wenxia [3 ,4 ]
Wang, Zhiqiang [3 ,4 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Ctr Math, Chongqing 401331, Peoples R China
[3] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
Hausdorff dimension; thickness; self-similar set; Cantor set; intersection; CANTOR SETS; APPROXIMATION; DIMENSION; FRACTALS;
D O I
10.1017/prm.2024.66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Estimating the Hausdorff dimensions of univoque sets for self-similar sets
    Chen, Xiu
    Jiang, Kan
    Li, Wenxia
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 862 - 873
  • [42] Self-similar measures and intersections of Cantor sets
    Peres, Y
    Solomyak, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (10) : 4065 - 4087
  • [43] Self-similar sets in complete metric spaces
    Schief, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (02) : 481 - 490
  • [44] Generating iterated function systems for self-similar sets with a separation condition
    Yao, Yuanyuan
    FUNDAMENTA MATHEMATICAE, 2017, 237 (02) : 127 - 133
  • [45] Inhomogeneous self-similar sets with overlaps
    Baker, Simon
    Fraser, Jonathan M.
    Mathe, Andras
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1 - 18
  • [46] A Certain Family of Self-Similar Sets
    Igudesman, K. B.
    RUSSIAN MATHEMATICS, 2011, 55 (02) : 26 - 38
  • [47] Bilipschitz embedding of self-similar sets
    Juan Deng
    Zhi-ying Wen
    Ying Xiong
    Li-Feng Xi
    Journal d'Analyse Mathématique, 2011, 114 : 63 - 97
  • [48] Topological structure of self-similar sets
    Luo, J
    Rao, H
    Tan, B
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (02) : 223 - 227
  • [49] Dimensions of points in self-similar fractals
    Lutz, Jack H.
    Mayordomo, Elvira
    SIAM JOURNAL ON COMPUTING, 2008, 38 (03) : 1080 - 1112
  • [50] ON DIMENSIONS OF VISIBLE PARTS OF SELF-SIMILAR SETS WITH FINITE ROTATION GROUPS
    Jarvenpaa, E. S. A.
    Jarvenpaa, Maarit
    Suomala, Ville
    Wu, Meng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (07) : 2983 - 2995