共 50 条
On a class of self-similar sets which contain finitely many common points
被引:0
作者:
Jiang, Kan
[1
]
Kong, Derong
[2
]
Li, Wenxia
[3
,4
]
Wang, Zhiqiang
[3
,4
]
机构:
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Ctr Math, Chongqing 401331, Peoples R China
[3] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词:
Hausdorff dimension;
thickness;
self-similar set;
Cantor set;
intersection;
CANTOR SETS;
APPROXIMATION;
DIMENSION;
FRACTALS;
D O I:
10.1017/prm.2024.66
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
引用
收藏
页数:22
相关论文