Wire directed energy deposition of steel-aluminum structures using cold metal transfer process

被引:2
作者
Kannan, Rangasayee [1 ]
Pierce, Dean [2 ]
Nayir, Selda [2 ]
Ul Ahsan, Rumman [3 ]
Kim, Duckbong [4 ]
Unocic, Kinga [5 ]
Lee, Yousub [6 ]
Jadhav, Sainand [3 ]
Karim, Md Abdul [3 ]
Nandwana, Peeyush [2 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37748 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37748 USA
[3] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN USA
[4] Tennessee Technol Univ, Dept Mfg & Engn Technol, Cookeville, TN USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[6] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 29卷
关键词
Additive manufacturing; Cold metal transfer; Steel; Aluminium; Bi-material; MECHANICAL-PROPERTIES; GALVANIZED STEEL; ALLOY; MICROSTRUCTURE; JOINTS; FABRICATION; DESIGN;
D O I
10.1016/j.jmrt.2024.02.110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a sharp transition from 316L stainless steel to 4043 aluminum alloy was fabricated using wire directed energy deposition (DED) via the cold metal transfer (CMT) process. The CMT process with its inherently low heat input, led to a significant reduction in intermetallic thickness at the bi-metallic interface compared to blown powder DED technique reported in the literature resulting in superior properties when compared to those of dissimilar steel -aluminum welds. Thermo -kinetic modeling confirmed that the intermetallic formation is through a classical nucleation and growth mechanism, and the fraction and thickness can be controlled by adjusting CMT process parameters to kinetically arrest or minimize the intermetallic formation. These findings underscore the efficacy of CMT-based wire DED for fabrication of steel -aluminum bi-metallic structures.
引用
收藏
页码:4537 / 4546
页数:10
相关论文
共 40 条
  • [1] Agudo L, 2008, STEEL RES INT, V79, P530, DOI [10.1002/srin.200806162, 10.2374/SRI08SP022-79-2008-530]
  • [2] STUDY OF Al/CAST IRON INTERFACE AND GRAPHITE BEHAVIOR
    Akbarifar, M.
    Divandari, M.
    [J]. JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY, 2017, 53 (01) : 53 - 59
  • [3] Ambroziak A, 2010, ARCH CIV MECH ENG, V10, P5
  • [4] THERMO-CALC & DICTRA, computational tools for materials science
    Andersson, JO
    Helander, T
    Höglund, LH
    Shi, PF
    Sundman, B
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02): : 273 - 312
  • [5] [Anonymous], About Us
  • [6] [Anonymous], SOURCES GREENHOUSE G
  • [7] Characterization and Modeling of Intermetallic Phase Formation during the Joining of Aluminum and Steel in Analogy to Co-Extrusion
    Behrens, Bernd-Arno
    Maier, Hans Juergen
    Klose, Christian
    Wester, Hendrik
    Thuerer, Susanne Elisabeth
    Heimes, Norman
    Uhe, Johanna
    [J]. METALS, 2020, 10 (12) : 1 - 16
  • [8] Metal additive manufacturing in aerospace: A review
    Blakey-Milner, Byron
    Gradl, Paul
    Snedden, Glen
    Brooks, Michael
    Pitot, Jean
    Lopez, Elena
    Leary, Martin
    Berto, Filippo
    du Plessis, Anton
    [J]. MATERIALS & DESIGN, 2021, 209
  • [9] Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy
    Borrisutthekul, Rattana
    Yachi, Taisei
    Miyashita, Yukio
    Mutoh, Yoshiharu
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 467 (1-2): : 108 - 113
  • [10] Cold metal transfer joining aluminum alloys-to-galvanized mild steel
    Cao, R.
    Yu, Gang
    Chen, J. H.
    Wang, Pei-Chung
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2013, 213 (10) : 1753 - 1763