Detection of the farmland plow areas using RGB-D images with an improved YOLOv5 model

被引:0
|
作者
Ji, Jiangtao [1 ,2 ,3 ]
Han, Zhihao [1 ]
Zhao, Kaixuan [1 ,2 ,3 ]
Li, Qianwen [2 ,3 ,4 ]
Du, Shucan [1 ]
机构
[1] Henan Univ Sci & Technol, Coll Agr Equipment Engn, Luoyang 471003, Henan, Peoples R China
[2] Longmen Lab, Sci & Technol Innovat Ctr Completed Set Equipment, Luoyang 471023, Henan, Peoples R China
[3] Collaborat Innovat Ctr Machinery Equipment Adv Mfg, Luoyang 471003, Henan, Peoples R China
[4] Henan Univ Sci & Technol, Sch Art & Design, Luoyang 471003, Henan, Peoples R China
关键词
plow areas; RGB-D camera; YOLO; object segmentation; contour boundary; average distance; SYSTEM;
D O I
10.25165/j.ijabe.20241703.8810
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Recognition of the boundaries of farmland plow areas has an important guiding role in the operation of intelligent agricultural equipment. To precisely recognize these boundaries, a detection method for unmanned tractor plow areas based on RGB-Depth (RGB-D) cameras was proposed, and the feasibility of the detection method was analyzed. This method applied advanced computer vision technology to the field of agricultural automation. Adopting and improving the YOLOv5-seg object segmentation algorithm, first, the Convolutional Block Attention Module (CBAM) was integrated into ConcentratedComprehensive Convolution Block (C3) to form C3CBAM, thereby enhancing the ability of the network to extract features from plow areas. The GhostConv module was also utilized to reduce parameter and computational complexity. Second, using the depth image information provided by the RGB-D camera combined with the results recognized by the YOLOv5-seg model, the mask image was processed to extract contour boundaries, align the contours with the depth map, and obtain the boundary distance information of the plowed area. Last, based on farmland information, the calculated average boundary distance was corrected, further improving the accuracy of the distance measurements. The experiment results showed that the YOLOv5-seg object segmentation algorithm achieved a recognition accuracy of 99% for plowed areas and that the ranging accuracy improved with decreasing detection distance. The ranging error at 5.5 m was approximately 0.056 m, and the average detection time per frame is 29 ms, which can meet the real-time operational requirements. The results of this study can provide precise guarantees for the autonomous operation of unmanned plowing units.
引用
收藏
页码:156 / 165
页数:10
相关论文
共 50 条
  • [11] Indoor Human Detection using RGB-D images
    Li, Baopu
    Jin, Haoyang
    Zhang, Qi
    Xia, Wei
    Li, Huiyun
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1354 - 1360
  • [12] YOLOv5-OCDS: An Improved Garbage Detection Model Based on YOLOv5
    Sun, Qiuhong
    Zhang, Xiaotian
    Li, Yujia
    Wang, Jingyang
    ELECTRONICS, 2023, 12 (16)
  • [13] BDC-YOLOv5: a helmet detection model employs improved YOLOv5
    Zhao, Lihong
    Tohti, Turdi
    Hamdulla, Askar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 4435 - 4445
  • [14] BDC-YOLOv5: a helmet detection model employs improved YOLOv5
    Lihong Zhao
    Turdi Tohti
    Askar Hamdulla
    Signal, Image and Video Processing, 2023, 17 : 4435 - 4445
  • [15] Improved YOLOv5 Object Detection Algorithm for Remote Sensing Images
    Yang, Chen
    She, Lu
    Yang, Lu
    Feng, Zixian
    Computer Engineering and Applications, 2023, 59 (15) : 76 - 86
  • [16] DDVC-YOLOv5: An Improved YOLOv5 Model for Road Defect Detection
    Zhong, Shihao
    Chen, Chunlin
    Luo, Wensheng
    Chen, Siyuan
    IEEE ACCESS, 2024, 12 : 134008 - 134019
  • [17] Visual Saliency Detection for RGB-D Images with Generative Model
    Wang, Song-Tao
    Zhou, Zhen
    Qu, Han-Bing
    Li, Bin
    COMPUTER VISION - ACCV 2016, PT V, 2017, 10115 : 20 - 35
  • [18] An improved YOLOv5 model: Application to leaky eggs detection
    Luo, Yangfan
    Huang, Yuan
    Wang, Qian
    Yuan, Kai
    Zhao, Zuoxi
    Li, Yuanhong
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2023, 187
  • [19] Pavement damage detection model based on improved YOLOv5
    He T.
    Li H.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2024, 57 (02): : 96 - 106
  • [20] An Improved Waste Detection and Classification Model Based on YOLOV5
    Hu, Fan
    Qian, Pengjiang
    Jiang, Yizhang
    Yao, Jian
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 741 - 754