Superposition-enhanced quantum neural network for multi-class image classification

被引:6
作者
Bai, Qi [1 ]
Hu, Xianliang [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Quantum neural networks; Quantum superposition principle; One-vs-all strategy; Multi-class classification; Quantum machine learning;
D O I
10.1016/j.cjph.2024.03.026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum neural networks have made progress in classification tasks. However, they face challenges when applied to multi -class image classification tasks. In this paper, we propose a superposition -enhanced quantum neural network(SEQNN). Comprising image superposition and quantum binary classifiers(QBCs), SEQNN addresses the following challenges. Firstly, the inherent linearity of quantum evolution is overcome by the one -vs -all strategy combined with QBCs, thereby circumventing the nonlinearity. Subsequently, the second challenge pertains to data imbalance within the subtasks of the one -vs -all strategy. Drawing inspiration from the mixup technique, image superposition is employed to alleviate this imbalance. Two image superposition methods, quantum state superposition(QSS) and angle superposition(AS), are proposed. The simulated experiments on MNIST and Fashion-Mnist show that AS is better than QSS in multi -class image classification tasks. Equipped with AS, SEQNN outperforms existing models and achieves an accuracy of 87.56% on MNIST.
引用
收藏
页码:378 / 389
页数:12
相关论文
共 50 条
  • [1] Accurate Image Multi-Class Classification Neural Network Model with Quantum Entanglement Approach
    Riaz, Farina
    Abdulla, Shahab
    Suzuki, Hajime
    Ganguly, Srinjoy
    Deo, Ravinesh C.
    Hopkins, Susan
    SENSORS, 2023, 23 (05)
  • [2] Intelligent Neural Network Schemes for Multi-Class Classification
    You, Ying-Jie
    Wu, Chen-Yu
    Lee, Shie-Jue
    Liu, Ching-Kuan
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [3] Neural network for multi-class classification by boosting composite stumps
    Nie, Qingfeng
    Jin, Lizuo
    Fei, Shumin
    Ma, Junyong
    NEUROCOMPUTING, 2015, 149 : 949 - 956
  • [4] Neural network for multi-class classification by boosting composite stumps
    Nie, Qingfeng
    Jin, Lizuo
    Fei, Shumin
    Ma, Junyong
    Neurocomputing, 2015, 149 (PB) : 949 - 956
  • [5] A genetically optimized neural network model for multi-class classification
    Bhardwaj, Arpit
    Tiwari, Aruna
    Bhardwaj, Harshit
    Bhardwaj, Aditi
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 60 : 211 - 221
  • [6] Convolutional Neural Network for Multi-class Classification of Diabetic Eye Disease
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    Wang, Kate
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (04)
  • [7] Image classification of root-trimmed garlic using multi-label and multi-class classification with deep convolutional neural network
    Anh, Pham Thi Quynh
    Thuyet, Dang Quoc
    Kobayashi, Yuichi
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2022, 190
  • [8] Multi-Class Quantum Convolutional Neural Networks
    Mordacci, Marco
    Ferrari, Davide
    Amoretti, Michele
    PROCEEDINGS OF THE ACM ON WORKSHOP ON QUANTUM SEARCH AND INFORMATION RETRIEVAL, QUASAR 2024, 2024, : 9 - 16
  • [9] Multi-class Review Rating Classification using Deep Recurrent Neural Network
    Junaid Hassan
    Umar Shoaib
    Neural Processing Letters, 2020, 51 : 1031 - 1048
  • [10] Multi-class Review Rating Classification using Deep Recurrent Neural Network
    Hassan, Junaid
    Shoaib, Umar
    NEURAL PROCESSING LETTERS, 2020, 51 (01) : 1031 - 1048