A Gradient Tracking Protocol for Optimization Over Nabla Fractional Multi-Agent Systems

被引:1
作者
Zhou, Shuaiyu [1 ]
Wei, Yiheng [1 ]
Liang, Shu [2 ,3 ]
Cao, Jinde [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
[3] Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201210, Peoples R China
来源
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS | 2024年 / 10卷
基金
中国国家自然科学基金;
关键词
Optimization; Convergence; Linear programming; Protocols; Information processing; Heuristic algorithms; Multi-agent systems; Gradient tracking; nabla fractional system; distributed optimization; multi-agent network; DISTRIBUTED OPTIMIZATION; CONVEX-OPTIMIZATION; LINEAR CONVERGENCE; CONSENSUS; ALGORITHM;
D O I
10.1109/TSIPN.2024.3402354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the distributed consensus optimization over a class of nabla fractional multi-agent systems (nFMASs). The proposed approach, built upon conventional gradient tracking techniques, addresses the specificity of the studied system by introducing a fractional gradient tracking protocol based on globally differential information of optimization variables. This protocol is applicable to nabla fractional systems of any order less than 1 and can be extended to integer discrete-time systems. The distributed optimization algorithms derived from this protocol ensure globally precise convergence under fixed step-sizes, thereby guaranteeing the feasibility of consensus optimization over nFMASs. Simulation results are presented to validate and substantiate the effectiveness of the proposed algorithms.
引用
收藏
页码:500 / 512
页数:13
相关论文
共 73 条
  • [11] Di Lorenzo P, 2016, INT CONF ACOUST SPEE, P4124, DOI 10.1109/ICASSP.2016.7472453
  • [12] Di Lorenzo P, 2015, 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), P229, DOI 10.1109/CAMSAP.2015.7383778
  • [13] Parallel Fractional Stochastic Gradient Descent With Adaptive Learning for Recommender Systems
    Elahi, Fatemeh
    Fazlali, Mahmood
    Malazi, Hadi Tabatabaee
    Elahi, Mehdi
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (03) : 470 - 483
  • [14] A divide-and-conquer algorithm for distributed optimization on networks
    Emirov, Nazar
    Song, Guohui
    Sun, Qiyu
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 70
  • [15] Distributed Nash Equilibrium Computation Under Round-Robin Scheduling Protocol
    Feng, Zhangcheng
    Xu, Wenying
    Cao, Jinde
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 339 - 346
  • [16] Goodrich C, 2015, DISCRETE FRACTIONAL
  • [17] Hong X. L., 2023, P 6 INT S AUT SYST 2, P1, DOI [10.1109/ISAS59543.2023.10164582, DOI 10.1109/ISAS59543.2023.10164582]
  • [18] Distributed Optimization Algorithm for Multi-Robot Formation with Virtual Reference Center
    Huang, Jingyi
    Zhou, Shuaiyu
    Tu, Hua
    Yao, Yuhong
    Liu, Qingshan
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (04) : 732 - 734
  • [19] Linear Convergence of Consensus-Based Quantized Optimization for Smooth and Strongly Convex Cost Functions
    Kajiyama, Yuichi
    Hayashi, Naoki
    Takai, Shigemasa
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (03) : 1254 - 1261
  • [20] Tutorial on Dynamic Average Consensus THE PROBLEM, ITS APPLICATIONS, AND THE ALGORITHMS
    Kia, Solmaz S.
    Van Scoy, Bryan
    Cortes, Jorge
    Freeman, Randy A.
    Lynch, Kevin M.
    Martinez, Sonia
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2019, 39 (03): : 40 - 72