A Gradient Tracking Protocol for Optimization Over Nabla Fractional Multi-Agent Systems

被引:1
作者
Zhou, Shuaiyu [1 ]
Wei, Yiheng [1 ]
Liang, Shu [2 ,3 ]
Cao, Jinde [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
[3] Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201210, Peoples R China
来源
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS | 2024年 / 10卷
基金
中国国家自然科学基金;
关键词
Optimization; Convergence; Linear programming; Protocols; Information processing; Heuristic algorithms; Multi-agent systems; Gradient tracking; nabla fractional system; distributed optimization; multi-agent network; DISTRIBUTED OPTIMIZATION; CONVEX-OPTIMIZATION; LINEAR CONVERGENCE; CONSENSUS; ALGORITHM;
D O I
10.1109/TSIPN.2024.3402354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the distributed consensus optimization over a class of nabla fractional multi-agent systems (nFMASs). The proposed approach, built upon conventional gradient tracking techniques, addresses the specificity of the studied system by introducing a fractional gradient tracking protocol based on globally differential information of optimization variables. This protocol is applicable to nabla fractional systems of any order less than 1 and can be extended to integer discrete-time systems. The distributed optimization algorithms derived from this protocol ensure globally precise convergence under fixed step-sizes, thereby guaranteeing the feasibility of consensus optimization over nFMASs. Simulation results are presented to validate and substantiate the effectiveness of the proposed algorithms.
引用
收藏
页码:500 / 512
页数:13
相关论文
共 73 条
  • [1] Bin M, 2019, IEEE DECIS CONTR P, P2994, DOI 10.1109/CDC40024.2019.9029824
  • [2] Triggered Gradient Tracking for asynchronous distributed optimization
    Carnevale, Guido
    Notarnicola, Ivano
    Marconi, Lorenzo
    Notarstefano, Giuseppe
    [J]. AUTOMATICA, 2023, 147
  • [3] Enhanced Gradient Tracking Algorithms for Distributed Quadratic Optimization via Sparse Gain Design
    Carnevale, Guido
    Bin, Michelangelo
    Notarnicola, Ivano
    Marconi, Lorenzo
    Notarstefano, Giuseppe
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 2696 - 2701
  • [4] ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM
    Cermak, Jan
    Gyori, Istvan
    Nechvatal, Ludek
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 651 - 672
  • [5] Stability regions for linear fractional differential systems and their discretizations
    Cermak, Jan
    Kisela, Tomas
    Nechvatal, Ludek
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 7012 - 7022
  • [6] Fixed-Time Convergence in Continuous-Time Optimization: A Fractional Approach
    Chen, Yuquan
    Wang, Fumian
    Wang, Bing
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 631 - 636
  • [7] Study on fractional order gradient methods
    Chen, Yuquan
    Gao, Qing
    Wei, Yiheng
    Wang, Yong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 310 - 321
  • [8] Distributed Gradient Tracking for Unbalanced Optimization With Different Constraint Sets
    Cheng, Songsong
    Liang, Shu
    Fan, Yuan
    Hong, Yiguang
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (06) : 3633 - 3640
  • [9] Distributed solving Sylvester equations with fractional order dynamics
    Cheng, Songsong
    Liang, Shu
    Fan, Yuan
    [J]. CONTROL THEORY AND TECHNOLOGY, 2021, 19 (02) : 249 - 259
  • [10] NEXT: In-Network Nonconvex Optimization
    Di Lorenzo, Paolo
    Scutari, Gesualdo
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2016, 2 (02): : 120 - 136