Decomposition in an extreme cold environment and associated microbiome-prediction model implications for the postmortem interval estimation

被引:3
作者
Iancu, Lavinia [1 ]
Bonicelli, Andrea [2 ]
Procopio, Noemi [2 ]
机构
[1] Univ North Dakota, Dept Criminal Justice, Grand Forks, ND 58202 USA
[2] Sch Law & Policing, Res Ctr Field Archaeol & Forens Taphon, Preston, England
关键词
postmortem interval; microbiome; prediction model; extreme environment; North Dakota; BACTERIAL; SUCCESSION; VARIABLES; DEATH; TIME;
D O I
10.3389/fmicb.2024.1392716
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Introduction The accurate estimation of postmortem interval (PMI), the time between death and discovery of the body, is crucial in forensic science investigations as it impacts legal outcomes. PMI estimation in extremely cold environments becomes susceptible to errors and misinterpretations, especially with prolonged PMIs. This study addresses the lack of data on decomposition in extreme cold by providing the first overview of decomposition in such settings. Moreover, it proposes the first postmortem microbiome prediction model for PMI estimation in cold environments, applicable even when the visual decomposition is halted.Methods The experiment was conducted on animal models in the second-coldest region in the United States, Grand Forks, North Dakota, and covered 23 weeks, including the winter months with temperatures as low as -39 degrees C. Random Forest analysis models were developed to estimate the PMI based either uniquely on 16s rRNA gene microbial data derived from nasal swabs or based on both microbial data and measurable environmental parameters such as snow depth and outdoor temperatures, on a total of 393 samples.Results Among the six developed models, the best performing one was the complex model based on both internal and external swabs. It achieved a Mean Absolute Error (MAE) of 1.36 weeks and an R2 value of 0.91. On the other hand, the worst performing model was the minimal one that relied solely on external swabs. It had an MAE of 2.89 weeks and an R2 of 0.73. Furthermore, among the six developed models, the commonly identified predictors across at least five out of six models included the following genera: Psychrobacter (ASV1925 and ASV1929), Carnobacterium (ASV2872) and Pseudomonas (ASV1863).Discussion The outcome of this research provides the first microbial model able to predict PMI with an accuracy of 9.52 days over a six-month period of extreme winter conditions.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Outdoor human decomposition in Sweden: A retrospective quantitative study of forensic-taphonomic changes and postmortem interval in terrestrial and aquatic settings [J].
Alfsdotter, Clara ;
Petaros, Anja .
JOURNAL OF FORENSIC SCIENCES, 2021, 66 (04) :1348-1363
[2]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[3]  
Bucheli S.R., 2016, Microbe, V11, P165, DOI DOI 10.1128/MICROBE.11.165.1
[4]   A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables [J].
Burcham, Zachary M. ;
Belk, Aeriel D. ;
Mcgivern, Bridget B. ;
Bouslimani, Amina ;
Ghadermazi, Parsa ;
Martino, Cameron ;
Shenhav, Liat ;
Zhang, Anru R. ;
Shi, Pixu ;
Emmons, Alexandra ;
Deel, Heather L. ;
Xu, Zhenjiang Zech ;
Nieciecki, Victoria ;
Zhu, Qiyun ;
Shaffer, Michael ;
Panitchpakdi, Morgan ;
Weldon, Kelly C. ;
Cantrell, Kalen ;
Ben-Hur, Asa ;
Reed, Sasha C. ;
Humphry, Greg C. ;
Ackermann, Gail ;
Mcdonald, Daniel ;
Chan, Siu Hung Joshua ;
Connor, Melissa ;
Boyd, Derek ;
Smith, Jake ;
Watson, Jenna M. S. ;
Vidoli, Giovanna ;
Steadman, Dawnie ;
Lynne, Aaron M. ;
Bucheli, Sibyl ;
Dorrestein, Pieter C. ;
Wrighton, Kelly C. ;
Carter, David O. ;
Knight, Rob ;
Metcalf, Jessica L. .
NATURE MICROBIOLOGY, 2024, 9 (03) :595-613
[5]   Bacterial Community Succession, Transmigration, and Differential Gene Transcription in a Controlled Vertebrate Decomposition Model [J].
Burcham, Zachary M. ;
Pechal, Jennifer L. ;
Schmidt, Carl J. ;
Bose, Jeffrey L. ;
Rosch, Jason W. ;
Benbow, M. Eric ;
Jordan, Heather R. .
FRONTIERS IN MICROBIOLOGY, 2019, 10
[6]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[7]   Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils [J].
Carter, David O. ;
Yellowlees, David ;
Tibbett, Mark .
APPLIED SOIL ECOLOGY, 2008, 40 (01) :129-137
[8]   Cadaver decomposition in terrestrial ecosystems [J].
Carter, David O. ;
Yellowlees, David ;
Tibbett, Mark .
NATURWISSENSCHAFTEN, 2007, 94 (01) :12-24
[9]   Seasonal variation of postmortem microbial communities [J].
Carter, David O. ;
Metcalf, Jessica L. ;
Bibat, Alexander ;
Knight, Rob .
FORENSIC SCIENCE MEDICINE AND PATHOLOGY, 2015, 11 (02) :202-207
[10]   FORENSIC ENTOMOLOGY IN CRIMINAL INVESTIGATIONS [J].
CATTS, EP ;
GOFF, ML .
ANNUAL REVIEW OF ENTOMOLOGY, 1992, 37 :253-272