A family of spectral conjugate gradient methods with strong convergence and its applications in image restoration and machine learning

被引:6
作者
Jiang, Xianzhen [1 ]
Pan, Ligang [1 ]
Liu, Meixing [2 ]
Jian, Jinbao [1 ]
机构
[1] Guangxi Minzu Univ, Coll Math & Phys, Ctr Appl Math Guangxi, Nanning 530006, Guangxi, Peoples R China
[2] Yulin Normal Univ, Ctr Appl Math Guangxi, Yulin 537000, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Unconstrained optimization; Spectral conjugate gradient method; Strong convergence; Image restoration; Machine learning; GLOBAL CONVERGENCE; SUFFICIENT DESCENT; RESTART PROCEDURES; ALGORITHM; PROPERTY;
D O I
10.1016/j.jfranklin.2024.107033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a family of spectral conjugate gradient methods for solving unconstrained optimization problems. Specifically, we provide two classes of bounded spectral parameters to be chosen, design a new truncation scheme of the non -negative conjugate parameter and set a restart procedure in our search direction. Independently of the specific spectral parameter, conjugate parameter and line search criterion, we prove that our proposed family satisfies the sufficient descent condition. We also prove its strong convergence under mild assumptions and the weak Wolfe line search. Numerical comparisons with other methods demonstrate the outstanding performances of our algorithm for solving medium-large-scale unconstrained optimization, image restoration and machine learning problems.
引用
收藏
页数:16
相关论文
共 47 条
[1]   Dai-Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processing [J].
Aminifard, Zohre ;
Babaie-Kafaki, Saman .
NUMERICAL ALGORITHMS, 2022, 89 (03) :1369-1387
[2]   Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization [J].
Andrei, N. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) :249-264
[3]  
Andrei N., 2008, ADV MODEL OPTIM, V10, P147, DOI [DOI 10.1002/ADEM.200890003, DOI 10.1021/ES702781X]
[4]   A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization [J].
Andrei, Neculai .
APPLIED MATHEMATICS LETTERS, 2008, 21 (02) :165-171
[5]   Two modified scaled nonlinear conjugate gradient methods [J].
Babaie-Kafaki, Saman .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 :172-182
[6]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[7]   A spectral conjugate gradient method for unconstrained optimization [J].
Birgin, EG ;
Martínez, JM .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (02) :117-128
[8]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[9]  
Bovik AC, 2010, Handbook of Image and Video Processing
[10]  
Cai J. F., 2007, IMAGE PROCESSING BAS, P109, DOI DOI 10.1007/978-3-540-33267-17