HIGHER REGULARITY FOR SINGULAR KÄHLER-EINSTEIN METRICS

被引:1
|
作者
Chiu, Shih-Kai [1 ]
Szekelyhidi, Gabor [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37235 USA
[2] Northwestern Univ, Dept Math, Evanston, IL USA
基金
美国国家科学基金会;
关键词
KAHLER-EINSTEIN METRICS; GROMOV-HAUSDORFF LIMITS; CALABI-YAU MANIFOLDS; RICCI CURVATURE; TANGENT-CONES; SPACES;
D O I
10.1215/00127094-2022-0107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study singular Kahler-Einstein metrics that are obtained as noncollapsed limits of polarized Kahler-Einstein manifolds. Our main result is that if the metric tangent cone at a point is locally isomorphic to the germ of the singularity, then the metric converges to the metric on its tangent cone at a polynomial rate on the level of Kahler potentials. When the tangent cone at the point has a smooth cross section, then the result implies polynomial convergence of the metric in the usual sense, generalizing a result due to Hein and Sun. We show that a similar result holds even in certain cases where the tangent cone is not locally isomorphic to the germ of the singularity. Finally, we prove a rigidity result for complete @@N -exact Calabi-Yau metrics with maximal volume growth. This generalizes a result of Conlon and Hein, which applies to the case of asymptotically conical manifolds.
引用
收藏
页码:3521 / 3558
页数:38
相关论文
共 50 条
  • [1] Kähler-Einstein metrics and projective embeddings
    Dominique Hulin
    The Journal of Geometric Analysis, 2000, 10 (3): : 525 - 528
  • [2] Kähler-Einstein metrics of cohomogeneity one
    Andrew Dancer
    McKenzie Y. Wang
    Mathematische Annalen, 1998, 312 : 503 - 526
  • [3] Uniqueness of tangent cone of Kähler-Einstein metrics on singular varieties with crepant singularities
    Xin Fu
    Mathematische Annalen, 2024, 388 : 3229 - 3258
  • [4] Twisted Kähler-Einstein metrics in big classes
    Darvas, Tamas
    Zhang, Kewei
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (12) : 4289 - 4327
  • [5] Kähler-Einstein metrics on families of Fano varieties
    Pan, Chung-Ming
    Trusiani, Antonio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (819): : 45 - 87
  • [6] Twisted Kähler-Einstein metrics on flag varieties
    Correa, Eder M.
    Grama, Lino
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) : 4273 - 4287
  • [7] Kähler-Einstein metrics with positive scalar curvature
    Gang Tian
    Inventiones mathematicae, 1997, 130 : 1 - 37
  • [8] Smoothing positive currents and the existence of Kähler-Einstein metrics
    BingLong Chen
    Science China Mathematics, 2012, 55 : 893 - 912
  • [9] Indefinite Kähler-Einstein Metrics on Compact Complex Surfaces
    Jimmy Petean
    Communications in Mathematical Physics, 1997, 189 : 227 - 235
  • [10] Kähler-Einstein metrics and obstruction flatness of circle bundles
    Ebenfelt, Peter
    Xiao, Ming
    Xu, Hang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 368 - 414