Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques

被引:0
|
作者
Zolfagharinia, Hossein [1 ]
Najafi, Mehdi [1 ]
Rizvi, Shamir [1 ]
Haghighi, Aida [2 ]
机构
[1] Toronto Metropolitan Univ, Ted Rogers Sch Management, Global Management Studies Dept, Toronto, ON M5B 2K3, Canada
[2] Toronto Metropolitan Univ, Fac Community Serv, Sch Occupat & Publ Hlth, Toronto, ON M5B 2K3, Canada
关键词
stock-price prediction; neural network; LSTM; multi-layer perceptron; news count; NEURAL-NETWORK; FINANCIAL NEWS; MULTIPLE CLASSIFIERS; HIDDEN LAYERS; HYBRID ARIMA; MARKET; MODEL; INDEX; SUPPORT; SYSTEM;
D O I
10.3390/a17060234
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Price prediction tools play a significant role in small investors' behavior. As such, this study aims to propose a method to more effectively predict stock prices in North America. Chiefly, the study addresses crucial questions related to the relevance of news and tweets in stock-price prediction and highlights the potential value of considering such parameters in algorithmic trading strategies-particularly during times of market panic. To this end, we develop innovative multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to investigate the influence of Twitter count (TC), and news count (NC) variables on stock-price prediction under both normal and market-panic conditions. To capture the impact of these variables, we integrate technical variables with TC and NC and evaluate the prediction accuracy across different model types. We use Bloomberg Twitter count and news publication count variables in North American stock-price prediction and integrate them into MLP and LSTM neural networks to evaluate their impact during the market pandemic. The results showcase improved prediction accuracy, promising significant benefits for traders and investors. This strategic integration reflects a nuanced understanding of the market sentiment derived from public opinion on platforms like Twitter.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Evaluation of Parametric and Nonparametric Machine-Learning Techniques for Prediction of Saturated and Near-Saturated Hydraulic Conductivity
    Kotlar, Ali Mehmandoost
    Iversen, Bo V.
    Van Lier, Quirijn de Jong
    VADOSE ZONE JOURNAL, 2019, 18 (01)
  • [42] The prediction of durability to freeze-thaw of limestone aggregates using machine-learning techniques
    Kahraman, Esma
    Ozdemir, Ali Can
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 324
  • [43] A Novel Framework Using Deep Learning Techniques for Ragi Price Prediction in Karnataka
    Meena, K.
    Chaitra, B.
    IEEE ACCESS, 2024, 12 : 136103 - 136119
  • [44] Performance prediction of a clean coal power plant via machine learning and deep learning techniques
    Haddadin, Mariana
    Mohamed, Omar
    Abu Elhaija, Wejdan
    Matar, Mustafa
    ENERGY & ENVIRONMENT, 2023, 35 (07) : 3575 - 3599
  • [45] Prediction of Financial Statement Fraud using Machine Learning Techniques in UAE
    El-Bannany, Magdi
    Dehghan, Ahlam H.
    Khedr, Ahmed M.
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 649 - 654
  • [46] Automated news reading: Stock price prediction based on financial news using context-capturing features
    Hagenau, Michael
    Liebmann, Michael
    Neumann, Dirk
    DECISION SUPPORT SYSTEMS, 2013, 55 (03) : 685 - 697
  • [47] RETRACTED: Extreme learning machine for stock price prediction (Retracted Article)
    Zhang, Fangzhao
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 2021, (3972-3985) : 3972 - 3985
  • [48] House Price Prediction Using Machine Learning And Neural Networks
    Varma, Ayush
    Sarma, Abhijit
    Doshi, Sagar
    Nair, Rohini
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1936 - 1939
  • [49] Heart Disease Prediction Using Machine Learning Techniques
    Sadar, Uzama
    Agarwal, Parul
    Parveen, Suraiya
    Jain, Sapna
    Obaid, Ahmed J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 551 - 560
  • [50] Comparative Analysis of Machine Learning Techniques for Cryptocurrency Price Prediction
    Salehi, Sara
    JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES, 2024, 48 (02) : 341 - 352