Computational Investigation on Radiation Induced Li-Ion Battery Thermal Runaway

被引:0
|
作者
Zhang, Liwen [1 ]
Chen, Yi [2 ]
Ge, Haiwen [3 ]
Zhao, Peng [1 ]
机构
[1] Univ Tennessee, UT Space Inst, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37388 USA
[2] A123 Syst, Novi, MI 48377 USA
[3] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
来源
CONFERENCE ON THERMO-AND FLUID DYNAMICS OF CLEAN PROPULSION POWERPLANTS, THIESEL 2022 | 2022年
关键词
LITHIUM; MODEL;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the global trend of electrification and the fast expansion of electrical vehicle market, research and development of Li-ion battery as main energy storage medium has attracted extensive interest. One of the key issues that need to be resolved is thermal runaway and its propagation, where side reactions can occur when the battery is exposed to heat and other abuse conditions. Thermal runaway reactions are largely exothermic and can lead to subsequent fire and explosions when thermal runaway propagates to adjacent cells. In the current work, we focus on the effect of radiation on thermal runaway, which is especially relevant when a battery is exposed to adjacent heat and fire sources. To validate the numerical simulation, calculated radiation heat flux is compared with analytical solutions of radiation heat flux based on view factor expressions obtained in simple 2D cylinder-to-cylinder geometries. Very good agreement has justified the validity of the radiation calculation. Furthermore, radiation induced thermal runaway is evaluated between two cylindrical 18650 batteries. It has shown that depending on the temperature of the triggering cell, thermal runaway can either be triggered in the region close to the cell surface or internal domain within the cell, with different roles of the pre-runaway chemistry. Integrated radiation heat flux is calculated under a wide range of triggering temperatures, showing different limits under low and high temperature conditions. By analyzing the pre-runaway chemical heat release, it is further seen that radiation plays a dominant role under higher temperature conditions, while its significance gradually decreases under lower temperature conditions. Results from this work evaluate the role of radiation in thermal runaway propagation and provide useful insights into the thermal runaway control.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system
    Li, Yuan
    Qi, Fei
    Guo, Hao
    Guo, Zhiping
    Xu, Gang
    Liu, Jiang
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 75 (03) : 183 - 199
  • [2] Modeling of Li-ion Battery Thermal Runaway: Insights into Modeling and Prediction
    Coman, Paul T.
    Weng, Andrew
    Ostanek, Jason
    Darcy, Eric C.
    Finegan, Donal P.
    White, Ralph E.
    ELECTROCHEMICAL SOCIETY INTERFACE, 2024, 33 (03) : 63 - 68
  • [3] An integrated scheme to prevent the propagation of Li-ion battery thermal runaway
    Zuo, Kanglin
    Li, Zhiping
    Liang, Haoming
    Wang, Zirui
    Ouyang, Tiancheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 241
  • [4] Investigation of the Impact of Flow of Vented Gas on Propagation of Thermal Runaway in a Li-Ion Battery Pack
    Mishra, Dhananjay
    Shah, Krishna
    Jain, Ankur
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (06)
  • [5] Mitigation strategy for Li-ion battery module thermal runaway propagation triggered by overcharging
    Li, Ke
    Li, Yunfan
    Shen, Weijia
    Zhang, Yuxiao
    Qu, Xinyi
    Huang, Jundi
    Yang, Guojun
    Lin, Yixin
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 198
  • [6] Non-dimensional analysis of the criticality of Li-ion battery thermal runaway behavior
    Huang, Peifeng
    Chen, Haodong
    Verma, Ankit
    Wang, Qingsong
    Mukherjee, Partha
    Sun, Jinhua
    JOURNAL OF HAZARDOUS MATERIALS, 2019, 369 : 268 - 278
  • [7] Radiation-Induced Thermal Runaway Propagation in a Cylindrical Li-Ion Battery Pack: Non-Monotonicity, Chemical Kinetics, and Geometric Considerations
    Zhang, Liwen
    Chen, Yi
    Ge, Haiwen
    Jain, Ankur
    Zhao, Peng
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [8] MODELING LI-ION BATTERY THERMAL RUNAWAY USING A THREE SECTION THERMAL MODEL
    Cai, Ting
    Stefanopoulou, Anna G.
    Siegel, Jason B.
    PROCEEDINGS OF THE ASME 11TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2018, VOL 2, 2018,
  • [9] Toxicity, a serious concern of thermal runaway from commercial Li-ion battery
    Sun, Jie
    Li, Jigang
    Zhou, Tian
    Yang, Kai
    Wei, Shouping
    Tang, Na
    Dang, Nannan
    Li, Hong
    Qiu, Xinping
    Chen, Liquan
    NANO ENERGY, 2016, 27 : 313 - 319
  • [10] Review of Research about Thermal Runaway and Management of Li-ion Battery Energy Storage Systems
    Zhang, Xiaoqiang
    Li, Lei
    Zhang, Weiping
    2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 3216 - 3220