A NOVEL RULE-BASED OVERSAMPLING APPROACH FOR IMBALANCED DATA CLASSIFICATION

被引:0
|
作者
Zhang, Xiao [1 ]
Paz, Ivan [1 ]
Nebot, Angela [1 ]
机构
[1] Univ Politecn Cataluna, Soft Comp Res Grp, Intelligent Data Sci & Artificial Intelligence Re, Barcelona, Spain
关键词
Rule-based approach; Oversampling; Data synthesis; Imbalanced data; Classification; DATA-SETS; SMOTE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When confronted with imbalanced datasets, traditional classifiers frequently struggle to correctly categorize samples from the minority class, adversely impacting the overall predictive performance of machine learning models. Current oversampling techniques generally focus on data interpolation through neighbor selection, often neglecting to uncover underlying data structures and relationships. This study introduces a novel application for RuLer, an algorithm originally developed for identifying sound patterns in the artistic domain of live coding. When adapted for data oversampling (as Ad-RuLer), the algorithm shows significant promise in addressing the challenges associated with imbalanced class distribution. We undertake a thorough comparative evaluation of Ad-RuLer against established oversampling algorithms such as SMOTE, ADASYN, Tomek-links, Borderline-SMOTE, and KmeansSMOTE. The evaluation employs various classifiers including logistic regression, random forest, and XGBoost, and is conducted over six real-world biomedical datasets with varying degrees of imbalance.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 50 条
  • [41] Hyperspectral Image Classification with Imbalanced Data Based on Oversampling and Convolutional Neural Network
    Cai, Lei
    Zhang, Geng
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [42] OALDPC: oversampling approach based on local density peaks clustering for imbalanced classification
    Li, Junnan
    Zhu, Qingsheng
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30987 - 31017
  • [43] Local distribution-based adaptive minority oversampling for imbalanced data classification
    Wang, Xinyue
    Xu, Jian
    Zeng, Tieyong
    Jing, Liping
    NEUROCOMPUTING, 2021, 422 : 200 - 213
  • [44] OALDPC: oversampling approach based on local density peaks clustering for imbalanced classification
    Junnan Li
    Qingsheng Zhu
    Applied Intelligence, 2023, 53 : 30987 - 31017
  • [45] Gene Selection for Microarray Cancer Data Classification by a Novel Rule-Based Algorithm
    Angulo, Adrian Pino
    INFORMATION, 2018, 9 (01):
  • [46] A quantum-based oversampling method for classification of highly imbalanced and overlapped data
    Yang, Bei
    Tian, Guilan
    Luttrell, Joseph
    Gong, Ping
    Zhang, Chaoyang
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (24) : 2500 - 2513
  • [47] OVERSAMPLING METHOD FOR IMBALANCED CLASSIFICATION
    Zheng, Zhuoyuan
    Cai, Yunpeng
    Li, Ye
    COMPUTING AND INFORMATICS, 2015, 34 (05) : 1017 - 1037
  • [48] Model-Based Oversampling for Imbalanced Sequence Classification
    Gong, Zhichen
    Chen, Huanhuan
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1009 - 1018
  • [49] Classification and Rule-Based Approach to Diagnose Pulmonary Tuberculosis
    Dongardive, Jyotshna
    Xavier, Agnes
    Jain, Kavita
    Abraham, Siby
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT I, 2011, 190 : 328 - +
  • [50] Rule-based classification framework for remote sensing data
    Elmannai, Hela
    Salhi, Amina
    Hamdi, Monia
    Sliti, Mohamed
    Algarni, Abeer Dhafer
    Loghmari, Mohamed A.
    Naceur, Mohamed S.
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01)