Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes

被引:4
作者
Simatos, Dimitrios [1 ,2 ]
Nikolka, Mark [1 ]
Charmet, Jerome [3 ,4 ]
Spalek, Leszek J. [1 ]
Toprakcioglu, Zenon [2 ]
Jacobs, Ian E. [1 ]
Dimov, Ivan B. [5 ]
Schweicher, Guillaume [6 ]
Lee, Mi Jung [7 ]
Fernandez-Posada, Carmen M. [8 ]
Howe, Duncan J. [2 ]
Hakala, Tuuli A. [2 ]
Roode, Lianne W. Y. [2 ]
Pecunia, Vincenzo [9 ]
Sharp, Thomas P. [1 ]
Zhang, Weimin [10 ]
Alsufyani, Maryam [11 ]
McCulloch, Iain [10 ,11 ]
Knowles, Tuomas P. J. [2 ]
Sirringhaus, Henning [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Optoelect Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Yusuf Hamied Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[3] HES SO Univ Appl Sci Western Switzerland, Sch Engn HE Arc Ingenierie, CH-2000 Neuchatel, Switzerland
[4] Univ Bern, Fac Med, Bern, Switzerland
[5] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge, England
[6] Univ Libre Bruxelles ULB, Fac Sci, Lab Chim Polymeres, Brussels, Belgium
[7] Taejae Univ, Sch Nat Sci, Seoul, South Korea
[8] Maxwell Ctr, Dept Phys, Cambridge, England
[9] Simon Fraser Univ, Fac Appl Sci, Sch Sustainable Energy Engn, Surrey, BC, Canada
[10] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[11] Univ Oxford, Dept Chem, Oxford, England
来源
SMARTMAT | 2024年 / 5卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
contaminants; galvanic corrosion; long-term sensing; organic electronics; organic field-effect transistors; water stability; HIGH-PERFORMANCE; CHARGE-TRANSPORT; POLYMERS; MOBILITY; SURFACE; DIMENSIONALITY; WETTABILITY; DEGRADATION; ADSORPTION; MECHANISM;
D O I
10.1002/smm2.1291
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A key component of organic bioelectronics is electrolyte-gated organic field-effect transistors (EG-OFETs), which have recently been used as sensors to demonstrate label-free, single-molecule detection. However, these devices exhibit limited stability when operated in direct contact with aqueous electrolytes. Ultrahigh stability is demonstrated to be achievable through the utilization of a systematic multifactorial approach in this study. EG-OFETs with operational stability and lifetime several orders of magnitude higher than the state of the art have been fabricated by carefully controlling a set of intricate stability-limiting factors, including contamination and corrosion. The indacenodithiophene-co-benzothiadiazole (IDTBT) EG-OFETs exhibit operational stability that exceeds 900 min in a variety of widely used electrolytes, with an overall lifetime exceeding 2 months in ultrapure water and 1 month in various electrolytes. The devices were not affected by electrical stress-induced trap states and can remain stable even in voltage ranges where electrochemical doping occurs. To validate the applicability of our stabilized device for biosensing applications, the reliable detection of the protein lysozyme in ultrapure water and in a physiological sodium phosphate buffer solution for 1500 min was demonstrated. The results show that polymer-based EG-OFETs are a viable architecture not only for short-term but also for long-term biosensing applications. Electrolyte-gated organic field-effect transistors (EG-OFETs) have exhibit limited stability when operated in direct contact with aqueous electrolytes. We demonstrate that ultrahigh stability can be achieved by carefully controlling a set of intricate stability-limiting factors, including contamination and corrosion. We fabricated indacenodithiophene-co-benzothiadiazole (IDTBT) EG-OFETs whose operational stability exceeds 900 min in a variety of widely used electrolytes. Moreover, their overall lifetime exceeds 2 months in ultrapure water and 1 month in various electrolytes. image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Printed, cost-effective and stable poly(3-hexylthiophene) electrolyte-gated field-effect transistors
    Blasi, Davide
    Viola, Fabrizio
    Modena, Francesco
    Luukkonen, Axel
    Macchia, Eleonora
    Picca, Rosaria Anna
    Gounani, Zahra
    Tewari, Amit
    Osterbacka, Ronald
    Caironi, Mario
    Vajna, Zsolt M. Kovacs
    Scamarcio, Gaetano
    Torricelli, Fabrizio
    Torsi, Luisa
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (43) : 15312 - 15321
  • [22] Detection Beyond Debye's Length with an Electrolyte-Gated Organic Field-Effect Transistor
    Palazzo, Gerardo
    De Tullio, Donato
    Magliulo, Maria
    Mallardi, Antonia
    Intranuovo, Francesca
    Mulla, Mohammad Yusuf
    Favia, Pietro
    Vikholm-Lundin, Inger
    Torsi, Luisa
    ADVANCED MATERIALS, 2015, 27 (05) : 911 - 916
  • [23] Electrolyte-Gated Organic Field-Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer
    Magliulo, Maria
    Mallardi, Antonia
    Mulla, Mohammad Yusuf
    Cotrone, Serafina
    Pistillo, Bianca Rita
    Favia, Pietro
    Vikholm-Lundin, Inger
    Palazzo, Gerardo
    Torsi, Luisa
    ADVANCED MATERIALS, 2013, 25 (14) : 2090 - 2094
  • [24] Top-gate organic field-effect transistors fabricated on paper with high operational stability
    Wang, Cheng-Yin
    Fuentes-Hernandez, Canek
    Chou, Wen-Fang
    Kippelen, Bernard
    ORGANIC ELECTRONICS, 2017, 41 : 340 - 344
  • [25] Phase separation induced high mobility and electrical stability in organic field-effect transistors
    Bharti, Deepak
    Tiwari, Shree Prakash
    SYNTHETIC METALS, 2016, 221 : 186 - 191
  • [26] Influence of the semiconductor oxidation potential on the operational stability of organic field-effect transistors
    Sharma, A.
    Mathijssen, S. G. J.
    Bobbert, P. A.
    de Leeuw, D. M.
    APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [27] Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors
    Burtscher, Bernhard
    Urbina, Pamela Allison Manco
    Diacci, Chiara
    Borghi, Simone
    Pinti, Marcello
    Cossarizza, Andrea
    Salvarani, Carlo
    Berggren, Magnus
    Biscarini, Fabio
    Simon, Daniel T.
    Bortolotti, Carlo A.
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [28] Monolayer organic field-effect transistors
    Liu, Jie
    Jiang, Lang
    Hu, Wenping
    Liu, Yunqi
    Zhu, Daoben
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (03) : 313 - 330
  • [29] Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing
    Munoz, Jose
    Leonardi, Francesca
    Ozmen, Tayfun
    Riba-Moliner, Marta
    Gonzalez-Campo, Arantzazu
    Baeza, Mireia
    Mas-Torrent, Marta
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (47) : 14993 - 14998
  • [30] High-performance and multifunctional organic field-effect transistors
    Zhao, Yujie
    Wang, Wei
    He, Zihan
    Peng, Boyu
    Di, Chong-An
    Li, Hanying
    CHINESE CHEMICAL LETTERS, 2023, 34 (09)