A data-driven approach to mapping multidimensional poverty at residential block level in Mexico

被引:0
|
作者
Zea-Ortiz, Marivel [1 ]
Vera, Pablo [1 ]
Salas, Joaquin [1 ,4 ]
Manduchi, Roberto [3 ]
Villasenor, Elio [1 ]
Figueroa, Alejandra [2 ]
Suarez, Ranyart R. [2 ]
机构
[1] Inst Politecn Nacl, CICATA Queretaro, Cerro Blanco 141, Santiago de Queretaro 76090, Queretaro, Mexico
[2] Inst Nacl Geog & Estadist, Lab Ciencia Datos & Metodos Modernos Prod Informac, Heroe Nacozari 2301, Aguascalientes 20276, Aguascalientes, Mexico
[3] Univ Calif Santa Cruz, Dept Comp Sci & Engn, 1156 High St, Santa Cruz, CA 95064 USA
[4] MIT, Earth Signals & Syst Grp, Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Human poverty assessment; Sustainable development goals; Computational intelligence for sustainability; SATELLITE;
D O I
10.1007/s10668-024-05230-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, inexpensive and granular human poverty assessments are critical for data-driven policy decision-making. This research proposes a novel approach to computing poverty scores utilizing multispectral satellite images and indices calculated from census reference values. We show how this approach can leverage standard and sparse survey-based multidimensional poverty assessments at the municipal level to develop a deep learning architecture to obtain poverty scores at the residential block level. This method has the distinctive feature that the obtained inference corresponds to Multidimensional Measurement of Poverty generated by CONEVAL, the Mexican agency responsible for measuring poverty. We provide a reliable alternative to survey-based approaches with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.802 +/- 0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.802\pm 0.022$$\end{document} for the lack of housing quality and spaces dimension. A convolutional neural network trained on multispectral satellite images and the lack of housing quality and spaces dimension, which is regressed from census reference variables corresponding to lack of water, electricity, sewage, concrete floor, toilet and occupancy level obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.753. These results represent a significant step forward in including machine learning techniques to provide reliable information at reduced costs and a higher spatiotemporal frequency than traditional person-to-person surveys.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Fluctuations in water level and the dynamics of zooplankton: a data-driven modelling approach
    Gal, Gideon
    Skerjanec, Mateja
    Atanasova, Natasa
    FRESHWATER BIOLOGY, 2013, 58 (04) : 800 - 816
  • [42] Tunnel Reconstruction With Block Level Precision by Combining Data-Driven Segmentation and Model-Driven Assembly
    Cao, Zhen
    Chen, Dong
    Peethambaran, Jiju
    Zhang, Zhenxin
    Xia, Shaobo
    Zhang, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8853 - 8872
  • [43] A penalised data-driven block shrinkage approach to empirical Bayes wavelet estimation
    Wang, Xue
    Walker, Stephen G.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 990 - 996
  • [44] Data-Driven Simulation of Complex Multidimensional Time Series
    Schruben, Lee W.
    Singham, Dashi I.
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (01):
  • [45] A novel data-driven approach for residential electricity consumption prediction based on ensemble learning
    Chen, Kunlong
    Jiang, Jiuchun
    Zheng, Fangdan
    Chen, Kunjin
    ENERGY, 2018, 150 : 49 - 60
  • [46] Optimal Energy Management of a Residential Prosumer: A Robust Data-Driven Dynamic Programming Approach
    Guo, Zhongjie
    Wei, Wei
    Chen, Laijun
    Wang, Zhaojian
    Catalao, Joao P. S.
    Mei, Shengwei
    IEEE SYSTEMS JOURNAL, 2022, 16 (01): : 1548 - 1557
  • [47] Assessing the Flexibility Potential of the Residential Load in Smart Electricity Grids - A Data-Driven Approach
    Azari, Delaram
    Torbaghan, Shahab Shariat
    Cappon, Hans
    Gibescu, Madeleine
    Keesman, Karel
    Rijnaarts, Huub
    2017 14TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM 17), 2017,
  • [48] A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings
    Ali, Usman
    Shamsi, Mohammad Haris
    Bohacek, Mark
    Hoare, Cathal
    Purcell, Karl
    Mangina, Eleni
    O'Donnell, James
    APPLIED ENERGY, 2020, 267
  • [49] User Mapping Strategies in Multi-Cloud Streaming: A Data-driven Approach
    Zhu, Guowei
    Mo, Chou
    Wang, Zhi
    Zhu, Wenwu
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [50] User Mapping Strategy in Multi-CDN Streaming: A Data-Driven Approach
    Zhu, Guowei
    Gu, Weixi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (09) : 6638 - 6649