Total controllability of nonlocal semilinear functional evolution equations with non-instantaneous impulses

被引:0
作者
Kumar, J. [1 ]
Singh, S. [1 ]
Arora, S. [1 ]
Dabas, J. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Appl Sci & Engn, Roorkee 247667, India
关键词
Total controllability; Non-instantaneous impulse; Functional evolution equations; Nonlocal condition; Banach fixed point theorem; NONLINEAR DIFFERENTIAL-EQUATIONS; EXISTENCE; SYSTEMS; DELAY;
D O I
10.1007/s13226-024-00613-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we are discussing a more vital concept of controllability, termed total controllability. We have considered a nonlocal semilinear functional evolution equation with non-instantaneous impulses and finite delay in Hilbert spaces. A set of sufficient conditions of total controllability is obtained for the evolution system under consideration by imposing the theory of C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroup and Banach fixed point theorem. We also established the total controllability results for a functional integro-differential equation. Finally, an example demonstrates the feasibility of derived abstract results.
引用
收藏
页数:18
相关论文
共 42 条
[1]   Total controllability for noninstantaneous impulsive conformable fractional evolution system with nonlinear noise and nonlocal conditions [J].
Ahmed, Hamdy M. .
FILOMAT, 2023, 37 (16) :5287-5299
[2]   Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion [J].
Ahmed, Hamdy M. ;
El-Borai, Mahmoud M. ;
El Bab, A. S. Okb ;
Ramadan, M. Elsaid .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[3]   Approximate controllability of semilinear impulsive functional differential systems with non-local conditions [J].
Arora, Sumit ;
Singh, Soniya ;
Dabas, Jaydev ;
Mohan, Manil T. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) :1070-1088
[4]  
Azbelev N.V., 2007, Introduction to the Theory of Functional Differential Equations: Methods and Applications, V3
[5]   Controllability of neutral functional integrodifferential systems in Banach spaces [J].
Balachandran, K ;
Sakthivel, R ;
Dauer, JP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) :117-126
[6]   Existence of solutions of nonlinear differential equations with nonlocal conditions [J].
Benchohra, M ;
Ntouyas, SK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :477-483
[7]   Controllability results for impulsive functional differential inclusions [J].
Benchohra, M ;
Górniewicz, L ;
Ntouyas, SK ;
Ouahab, A .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :211-228
[8]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[9]   Trajectory controllability of nonlinear integro-differential system [J].
Chalishajar, D. N. ;
George, R. K. ;
Nandakumaran, A. K. ;
Acharya, F. S. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (07) :1065-1075
[10]   Total Controllability of the Second Order Semi-Linear Differential Equation with Infinite Delay and Non-Instantaneous Impulses [J].
Chalishajar, Dimplekumar N. ;
Kumar, Avadhesh .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (03)