On Inner Derivations of Leibniz Algebras

被引:1
|
作者
Patlertsin, Sutida [1 ]
Pongprasert, Suchada [1 ]
Rungratgasame, Thitarie [1 ]
机构
[1] Srinakharinwirot Univ, Fac Sci, Dept Math, 114 Sukhumvit 23, Bangkok 10110, Thailand
关键词
Leibniz algebra; Lie algebra; derivation; inner derivation; central derivation; completeness; semisimple;
D O I
10.3390/math12081152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Leibniz algebras are generalizations of Lie algebras. Similar to Lie algebras, inner derivations play a crucial role in characterizing complete Leibniz algebras. In this work, we demonstrate that the algebra of inner derivations of a Leibniz algebra can be decomposed into the sum of the algebra of left multiplications and a certain ideal. Furthermore, we show that the quotient of the algebra of derivations of the Leibniz algebra by this ideal yields a complete Lie algebra. Our results independently establish that any derivation of a semisimple Leibniz algebra can be expressed as a combination of three derivations. Additionally, we compare the properties of the algebra of inner derivations of Leibniz algebras with the algebra of central derivations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Some cohomologically rigid solvable Leibniz algebras
    Camacho, Luisa M.
    Kaygorodov, Ivan
    Omirov, Bakhrom
    Solijanova, Gulkhayo
    JOURNAL OF ALGEBRA, 2020, 560 : 502 - 520
  • [42] Derivations of two-step nilpotent algebras
    La Rosa, Gianmarco
    Mancini, Manuel
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (12) : 4928 - 4948
  • [43] Degenerations of Leibniz and Anticommutative Algebras
    Ismailov, Nurlan
    Kaygorodov, Ivan
    Volkov, Yury
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (03): : 539 - 549
  • [44] On Classification of Filiform Leibniz Algebras
    Gomez, J. R.
    Omirov, B. A.
    ALGEBRA COLLOQUIUM, 2015, 22 : 757 - 774
  • [45] Ideally finite Leibniz algebras
    Kurdachenko, L. A.
    Subbotin, I. Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2023, 35 (02): : 168 - 179
  • [46] On some "minimal" Leibniz algebras
    Chupordia, V. A.
    Kurdachenko, L. A.
    Subbotin, I. Ya.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (05)
  • [47] On the degenerations of solvable Leibniz algebras
    Casas, J. M.
    Khudoyberdiyev, A. Kh.
    Ladra, M.
    Omirov, B. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (02) : 472 - 487
  • [48] DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS
    Ayupov, Sh. A.
    Kudaybergenov, K. K.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (02) : 305 - 337
  • [49] Local derivations on Witt algebras
    Chen, Yang
    Zhao, Kaiming
    Zhao, Yueqiang
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06) : 1159 - 1172
  • [50] Derivations of noncommutative Arens algebras
    Sh. A. Ayupov
    K. K. Kudaybergenov
    Functional Analysis and Its Applications, 2007, 41 : 303 - 305