On Inner Derivations of Leibniz Algebras

被引:1
|
作者
Patlertsin, Sutida [1 ]
Pongprasert, Suchada [1 ]
Rungratgasame, Thitarie [1 ]
机构
[1] Srinakharinwirot Univ, Fac Sci, Dept Math, 114 Sukhumvit 23, Bangkok 10110, Thailand
关键词
Leibniz algebra; Lie algebra; derivation; inner derivation; central derivation; completeness; semisimple;
D O I
10.3390/math12081152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Leibniz algebras are generalizations of Lie algebras. Similar to Lie algebras, inner derivations play a crucial role in characterizing complete Leibniz algebras. In this work, we demonstrate that the algebra of inner derivations of a Leibniz algebra can be decomposed into the sum of the algebra of left multiplications and a certain ideal. Furthermore, we show that the quotient of the algebra of derivations of the Leibniz algebra by this ideal yields a complete Lie algebra. Our results independently establish that any derivation of a semisimple Leibniz algebra can be expressed as a combination of three derivations. Additionally, we compare the properties of the algebra of inner derivations of Leibniz algebras with the algebra of central derivations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ALMOST INNER DERIVATIONS OF LEIBNIZ ALGEBRAS
    Mansurog, Nil
    Ozkaya, Mucahit
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (04): : 969 - 981
  • [2] Almost Inner Derivations of Some Nilpotent Leibniz Algebras
    Adashev, Zhobir K.
    Kurbanbaev, Tuuelbay K.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (06): : 733 - 745
  • [3] On Derivations of Semisimple Leibniz Algebras
    I. S. Rakhimov
    K. K. Masutova
    B. A. Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 295 - 306
  • [4] On Derivations of Semisimple Leibniz Algebras
    Rakhimov, I. S.
    Masutova, K. K.
    Omirov, B. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) : 295 - 306
  • [5] On derivations of Leibniz algebras
    Misra, Kailash C.
    Patlertsin, Sutida
    Pongprasert, Suchada
    Rungratgasame, Thitarie
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4715 - 4722
  • [6] On special subalgebras of derivations of Leibniz algebras
    Shermatova, Z.
    Khudoyberdiyev, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 34 (02): : 326 - 336
  • [7] On the algebra of derivations of some Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Mykola M.
    Subbotin, Igor Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 38 (01): : 63 - 86
  • [8] A note on outer derivations of Leibniz algebras
    Biyogmam, G. R.
    Tcheka, C.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (05) : 2190 - 2198
  • [9] On the endomorphisms and derivations of some Leibniz algebras
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya
    Yashchuk, Viktoriia S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (01)
  • [10] Semisimple Leibniz algebras, their derivations and automorphisms
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Omirov, Bakhrom
    Zhao, Kaiming
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (10) : 2005 - 2019