Outer billiards in the spaces of oriented geodesics of the three-dimensional space forms

被引:1
作者
Godoy, Yamile [1 ,2 ]
Harrison, Michael [3 ]
Salvai, Marcos [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, Ciudad Univ, RA-X5000HUA Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, CIEM, Ciudad Universitaria, RA-X5000HUA Cordoba, Argentina
[3] Inst Adv Study, Princeton, NJ USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2024年 / 109卷 / 06期
关键词
FIBRATIONS; GEOMETRY; LINES;
D O I
10.1112/jlms.12922
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M kappa$M_{\kappa }$ be the three-dimensional space form of constant curvature kappa=0,1,-1$\kappa =0,1,-1$, that is, Euclidean space R3$\mathbb {R}<^>{3}$, the sphere S3$S<^>{3}$, or hyperbolic space H3$H<^>{3}$. Let S$S$ be a smooth, closed, strictly convex surface in M kappa$M_{\kappa }$. We define an outer billiard map B$B$ on the four-dimensional space G kappa$\mathcal {G}_{\kappa }$ of oriented complete geodesics of M kappa$M_{\kappa }$, for which the billiard table is the subset of G kappa$\mathcal {G} _{\kappa }$ consisting of all oriented geodesics not intersecting S$S$. We show that B$B$ is a diffeomorphism when S$S$ is quadratically convex. For kappa=1,-1$\kappa =1,-1$, G kappa$\mathcal {G}_{\kappa }$ has a K & auml;hler structure associated with the Killing form of Iso(M kappa)$\operatorname{Iso}(M_{\kappa })$. We prove that B$B$ is a symplectomorphism with respect to its fundamental form and that B$B$ can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in R2n$\mathbb {R}<^>{2n}$ defined in terms of the standard symplectic structure. We show that B$B$ does not preserve the fundamental symplectic form on G kappa$\mathcal {G}_{\kappa }$ associated with the cross product on M kappa$M_{\kappa }$, for kappa=0,1,-1$\kappa =0,1,-1$. We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.
引用
收藏
页数:25
相关论文
共 31 条
[1]   On the geometry of spaces of oriented geodesics [J].
Alekseevsky, Dmitri V. ;
Guilfoyle, Brendan ;
Klingenberg, Wilhelm .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (04) :389-409
[2]  
Anciaux H, 2014, T AM MATH SOC, V366, P2699
[3]  
BESSE AL, 1978, ERGEBNISSE MATH IHRE, V93
[4]  
Bridson M. R., 2013, Metric spaces of nonpositive curvature, V319
[5]  
do Carmo M.P., 1970, J DIFFER GEOM, V4, P133
[6]  
do Carmo Manfredo P., 1976, Differential Geometry of Curves and Surfaces
[7]  
Dogru F, 2005, MATH INTELL, V27, P18
[8]   Hopf hypersurfaces in spaces of oriented geodesics [J].
Georgiou N. ;
Guilfoyle B. .
Journal of Geometry, 2017, 108 (3) :1129-1135
[9]   ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE [J].
Georgiou, Nikos ;
Guilfoyle, Brendan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) :1183-1219
[10]   GREAT-CIRCLE FIBRATIONS OF THE 3-SPHERE [J].
GLUCK, H ;
WARNER, FW .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :107-132