Resonance between planar self-affine measures

被引:1
作者
Pyorala, Aleksi [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
关键词
Self-affine measures; Hausdorff dimension; Convolution of measures; Resonance; LEDRAPPIER-YOUNG FORMULA; SETS; DIMENSION; SCENERY; XM;
D O I
10.1016/j.aim.2024.109770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if { phi i } i is an element of Gamma and { 0 j } j is an element of Lambda are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated selfaffine measures mu and v, the inequality dim H ( mu & lowast; v ) sigma min {2, dim H mu + dim H v } implies that there is algebraic resonance between the eigenvalues of the linear parts of phi i and 0 j . This extends to planar non-conformal setting the existing analogous results for self-conformal measures on the line. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:56
相关论文
共 40 条
[31]   Structure of distributions generated by the scenery flow [J].
Kaenmaki, Antti ;
Sahlsten, Tuomas ;
Shmerkin, Pablo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 :464-494
[32]  
Kempton T., 2015, PREPRINT
[33]  
Moreira C., 1998, Period. Math. Hungar, V37, P55, DOI DOI 10.1023/A:1004726319127
[34]   Convolutions of cantor measures without resonance [J].
Nazarov, Fedor ;
Peres, Yuval ;
Shmerkin, Pablo .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 187 (01) :93-116
[35]  
PARRY W, 1990, ASTERISQUE, P9
[36]   Resonance between Cantor sets [J].
Peres, Yuval ;
Shmerkin, Pablo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :201-221
[37]   VISIBLE PART OF DOMINATED SELF-AFFINE SETS IN THE PLANE [J].
Rossi, Eino .
ANNALES FENNICI MATHEMATICI, 2021, 46 (02) :1089-1103
[38]   On measures that improve Lq dimension under convolution [J].
Rossi, Eino ;
Shmerkin, Pablo .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (07) :2217-2236
[39]  
Schmidt K., 1977, MACMILLAN LECT MATH, V1
[40]  
Walters P., 1982, Graduate Texts in Mathematics