Resonance between planar self-affine measures

被引:1
作者
Pyorala, Aleksi [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
关键词
Self-affine measures; Hausdorff dimension; Convolution of measures; Resonance; LEDRAPPIER-YOUNG FORMULA; SETS; DIMENSION; SCENERY; XM;
D O I
10.1016/j.aim.2024.109770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if { phi i } i is an element of Gamma and { 0 j } j is an element of Lambda are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated selfaffine measures mu and v, the inequality dim H ( mu & lowast; v ) sigma min {2, dim H mu + dim H v } implies that there is algebraic resonance between the eigenvalues of the linear parts of phi i and 0 j . This extends to planar non-conformal setting the existing analogous results for self-conformal measures on the line. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:56
相关论文
共 40 条
[1]  
Barany B., 2021, PREPRINT
[2]  
Bárány B, 2023, Arxiv, DOI arXiv:2308.11399
[3]   ASSOUAD DIMENSION OF PLANAR SELF-AFFINE SETS [J].
Barany, Balazs ;
Kaenmaki, Antti ;
Rossi, Eino .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) :1297-1326
[4]   Domination, almost additivity, and thermodynamic formalism for planar matrix cocycles [J].
Barany, Balazs ;
Kaenmaki, Antti ;
Morris, Ian D. .
ISRAEL JOURNAL OF MATHEMATICS, 2020, 239 (01) :173-214
[5]   Hausdorff dimension of planar self-affine sets and measures [J].
Barany, Balazs ;
Hochman, Michael ;
Rapaport, Ariel .
INVENTIONES MATHEMATICAE, 2019, 216 (03) :601-659
[6]   Ledrappier-Young formula and exact dimensionality of self-affine measures [J].
Barany, Balazs ;
Kaenmaki, Antti .
ADVANCES IN MATHEMATICS, 2017, 318 :88-129
[7]   On the Ledrappier-Young formula for self-affine measures [J].
Barany, Balazs .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (03) :405-432
[8]  
Benoist Y, 2016, ERGEB MATH GRENZGEB, V62, P153, DOI 10.1007/978-3-319-47721-3_10
[9]   Some characterizations of domination [J].
Bochi, Jairo ;
Gourmelon, Nicolas .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (01) :221-231
[10]  
BOUGEROL P, 1985, PROGR PROBABILITY ST, V8