Vmin Shift Prediction Using Machine Learning-Based Methodology for Automotive Products

被引:0
|
作者
Yang, Y. L. [1 ]
Tsao, P. C. [1 ]
Lin, C. W. [1 ]
Chen, H. Q. [1 ]
Huang, B. J. [2 ]
Hsieh, Hank [3 ]
Chen, Kerwin [3 ]
Lee, Ross [4 ]
Koh, Khim [4 ]
Ting, Y. J. [4 ]
Hsu, B. C. [1 ]
Huang, Y. S. [1 ]
Lai, Citi [4 ]
Lee, M. Z. [1 ]
Lee, T. H. [1 ]
机构
[1] MediaTek Inc, Prod Engn, Hsinchu, Taiwan
[2] MediaTek Inc, High Performance Comp, Hsinchu, Taiwan
[3] MediaTek Inc, Qual & Reliabil, Hsinchu, Taiwan
[4] MediaTek Inc, AI & Data Engn, Hsinchu, Taiwan
来源
2024 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, IRPS 2024 | 2024年
关键词
Machine Learning; Vmin shift; aging monitor; datacenter; automotive;
D O I
10.1109/IRPS48228.2024.10529430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Predicting aging behavior is essential for product development to guarantee in-field lifetime. Conventionally, aging margin is determined by identifying the maximum shift value of minimum operating voltage (Vmin) through a series of high-temperature operation lifetime (HTOL) tests. In this paper, we propose a novel approach that leverages the machine learning (ML) techniques to predict Vmin shifts before conducting the HTOL test. Compared to the conventional fixed aging margin, this ML-based methodology offers the adaptive aging margins on voltage groups, resulting in significant power savings. The reduction in the aging margin is estimated to be > 20%. In addition, this proposed methodology enables the use of more sensitive monitors for detecting reliability degradation compared to the on-chip NAND and NOR based RO. In our experiment, the ML derived monitor demonstrated the 3x sensitivity to negative bias temperature instability ( NBTI) than NOR.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Machine Learning-Based Cellular Traffic Prediction Using Data Reduction Techniques
    Nashaat, Heba
    Mohammed, Nihal H.
    Abdel-Mageid, Salah M.
    Rizk, Rawya Y.
    IEEE ACCESS, 2024, 12 : 58927 - 58939
  • [32] Machine Learning-Based Academic Result Prediction System
    Bhushan, Megha
    Verma, Utkarsh
    Garg, Chetna
    Negi, Arun
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2024, 12 (01)
  • [33] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [34] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [35] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [36] Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning
    Harir, Mohamed Abdelkarim Nimir
    Ataro, Edwin
    Nyah, Clement Temaneh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (01) : 304 - 313
  • [37] Parkinson disease prediction using machine learning-based features from speech signal
    Linlin Yuan
    Yao Liu
    Hsuan-Ming Feng
    Service Oriented Computing and Applications, 2024, 18 : 101 - 107
  • [38] Machine learning-based prediction of CFST columns using gradient tree boosting algorithm
    Vu, Quang-Viet
    Truong, Viet-Hung
    Thai, Huu-Tai
    COMPOSITE STRUCTURES, 2021, 259
  • [39] CUSTOMER CHURN PREDICTION IN THE BANKING SECTOR USING MACHINE LEARNING-BASED CLASSIFICATION MODELS
    Tran H.
    Le N.
    Nguyen V.-H.
    Interdisciplinary Journal of Information, Knowledge, and Management, 2023, 18 : 87 - 105
  • [40] Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics
    Mao, Bing
    Ren, Yajun
    Yu, Xuan
    Liang, Xinliang
    Ding, Xiangming
    FRONTIERS IN ONCOLOGY, 2024, 14