Analytical study of attractors to a regularized 3D Boussinesq system

被引:0
作者
Azem, Leila [1 ]
Sboui, Abir [2 ]
Selmi, Ridha [3 ,4 ]
Abohelal, Afrah Fahed [5 ]
机构
[1] Northern Border Univ, Coll Sci & Art, Dept Math, Turaif, Saudi Arabia
[2] Northeren Border Univ, Coll Sci, Dept Math, POB 1321, Ar Ar 73222, Saudi Arabia
[3] ISSATM, Dept Math, Sfax, Tunisia
[4] Univ Gabes, Fac Sci, Dept Math, Gabes, Tunisia
[5] Univ Tunis El Manar, Fac Sci Tunis, Lab PDEs & Applicat LR03ES04, Tunis 1068, Tunisia
关键词
Three-dimensional regularized periodic Boussinesq system; global compact connected attractor; asymptotic behavior; global existence; global uniqueness; depen- dence on initial data; GLOBAL ATTRACTORS; BENARD-PROBLEM; EQUATIONS; EXISTENCE; MODEL;
D O I
10.36045/j.bbms.230719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Leray-alpha model to regularize the forced three-dimensional periodic Boussinesq system is shown to have a global in time unique solution and a universal attractor which is connected. Energy method, compactness argument and absorbing balls are used.
引用
收藏
页码:162 / 173
页数:12
相关论文
共 27 条
  • [1] The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature
    Al-Farhany, Khaled
    Al-Muhja, Barik
    Ali, Farhan
    Khan, Umair
    Zaib, Aurang
    Raizah, Zehba
    Galal, Ahmed M.
    [J]. MOLECULES, 2022, 27 (14):
  • [2] Azem L, 2023, MEM DIFFER EQU MATH, V88, P13
  • [3] Birnir B, 2004, DISCRETE CONT DYN S, V10, P53
  • [4] Cabral M, 2004, DISCRETE CONT DYN-A, V10, P89
  • [5] Algebraic bounds on the Rayleigh-Benard attractor
    Cao, Yu
    Jolly, Michael S.
    Titi, Edriss S.
    Whitehead, Jared P.
    [J]. NONLINEARITY, 2021, 34 (01) : 509 - 531
  • [6] Chaabani A., 2016, Math. Methods Appl. Sci, DOI [10.1002/mma.3950, DOI 10.1002/MMA.3950]
  • [7] Approximating the trajectory attractor of the 3D Navier-Stokes system using various α-models of fluid dynamics
    Chepyzhov, V. V.
    [J]. SBORNIK MATHEMATICS, 2016, 207 (04) : 610 - 638
  • [8] On a Leray-α model of turbulence
    Cheskidov, A
    Holm, DD
    Olson, E
    Titi, ES
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2055): : 629 - 649
  • [9] Uniform global attractors for the nonautonomous 3D Navier Stokes equations
    Cheskidov, Alexey
    Lu, Songsong
    [J]. ADVANCES IN MATHEMATICS, 2014, 267 : 277 - 306
  • [10] Constantin P, 1988, Navier-Stokes equations. Chicago Lectures inMathematics