Cancer Disease Prediction Using Integrated Smart Data Augmentation and Capsule Neural Network

被引:0
|
作者
Ravindran, U. [1 ]
Gunavathi, C. [2 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore 632014, India
[2] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore 632014, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Cancer; Data augmentation; Feature extraction; Data models; Gene expression; Deep learning; Predictive models; Generative adversarial networks; CapsNet; UDA; W-GAN; cancer disease; gene expression data; CLASSIFICATION;
D O I
10.1109/ACCESS.2024.3411633
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cancer accounts for a considerable portion of the illnesses that cause early human death worldwide, and this trend is expected to worsen in the coming years. Therefore, timely and precise identification would be tremendously helpful for cancer patients. Gene expression datasets are commonly utilized for disease identification, particularly in cancer therapy. Deep learning (DL) has become a popular technique in healthcare because of the abundance of computational capacity. The gene expression data samples for five types of cancer disease and healthy samples are collected, but the samples in the gene data are insufficient to fulfill the deep learning requirements. To increase the training sample size, data augmentation is frequently used. The main objective of this research is the diagnosis and classification of different types of cancer. In this research, correlation-centered feature selection and reduction are used to select the most relevant features from the large volume of gene information. The proposed method is a smart data augmentation process with the CapsNet (Capsule Neural Network) method for the accurate prediction and classification of cancer diseases. The proposed augmentation strategy integrates Uniform Distributive Augmentation (UDA) and a Wasserstein-Generative Adversarial Network (W-GAN). The synthetic data samples are generated using uniform distribution and Wasserstein distance, and the newly evolved datasets are employed to train CapsNet. Then, the practical outcome of the integrated smart data augmentation with CapsNet is compared with other DL methods. As a result, the proposed method enhances the classification accuracy, precision, and recall values (>98%) and reduces the error rate.
引用
收藏
页码:81813 / 81826
页数:14
相关论文
共 50 条
  • [21] A Novel Prediction Method for Smart Meter Error Using Multiview Convolutional Neural Network
    Tong, Xuan
    Ma, Jun
    Ma, Li
    Yan, Sen
    Tang, Qiu
    Teng, Zhaosheng
    Cheng, Da
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 42009 - 42017
  • [22] Enhanced Indonesian Ethnic Speaker Recognition using Data Augmentation Deep Neural Network
    Nugroho, Kristiawan
    Noersasongko, Edi
    Purwanto
    Muljono
    Setiadi, De Rosal Ignatius Moses
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (07) : 4375 - 4384
  • [23] Data augmentation based morphological classification of galaxies using deep convolutional neural network
    Mittal, Ansh
    Soorya, Anu
    Nagrath, Preeti
    Hemanth, D. Jude
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 601 - 617
  • [24] Roman Amphitheater Classification Using Convolutional Neural Network and Data Augmentation
    Nakouri, Haifa
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT 2021, 2022, 13148 : 476 - 484
  • [25] Cardiovascular Disease Prediction Using Particle Swarm Optimization and Neural Network Based an Integrated Framework
    S. Ramchandra Reddy
    G. Vishnu Murthy
    SN Computer Science, 6 (2)
  • [26] Convolutional Neural Network With Data Augmentation for SAR Target Recognition
    Ding, Jun
    Chen, Bo
    Liu, Hongwei
    Huang, Mengyuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 364 - 368
  • [27] EEG Emotion Signal of Artificial Neural Network by using Capsule Network
    Ali, Usman
    Li, Haifang
    Yao, Rong
    Wang, Qianshan
    Hussain, Waqar
    Duja, Syed Badar Ud
    Amjad, Muhammad
    Ahmed, Bilal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 434 - 443
  • [28] Facial Expression Recognition using Convolutional Neural Network with Data Augmentation
    Ahmed, Tawsin Uddin
    Hossain, Sazzad
    Hossain, Mohammad Shahadat
    Ul Islam, Raihan
    Andersson, Karl
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 336 - 341
  • [29] Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks
    Byra, Michal
    Dobruch-Sobczak, Katarzyna
    Klimonda, Ziemowit
    Piotrzkowska-Wroblewska, Hanna
    Litniewski, Jerzy
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 797 - 805
  • [30] Data Augmentation Using BiWGAN, Feature Extraction and Classification by Hybrid 2DCNN and BiLSTM to Detect Non-Technical Losses in Smart Grids
    Asif, Muhammad
    Nazeer, Orooj
    Javaid, Nadeem
    Alkhammash, Eman H.
    Hadjouni, Myriam
    IEEE ACCESS, 2022, 10 : 27467 - 27483