Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method

被引:53
作者
Tang, Jian-Fu [1 ]
Su, Hsiu-Hsien [1 ]
Lu, Yang-Ming [2 ]
Chu, Sheng-Yuan [1 ,3 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 70101, Taiwan
[2] Natl Univ Tainan, Dept Elect Engn, Tainan, Taiwan
[3] Natl Cheng Kung Univ, Adv Optoelect Technol Ctr, Tainan 70101, Taiwan
来源
CRYSTENGCOMM | 2015年 / 17卷 / 03期
关键词
FLOWER-LIKE ZNO; LOW-TEMPERATURE; NANOSTRUCTURES; SUBSTRATE; NANOWIRE; ARRAYS; FILMS; PHOTOLUMINESCENCE; PERFORMANCE; DEPOSITION;
D O I
10.1039/c4ce01940g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study developed a hydrothermal method for the growth of three types of zinc oxide (ZnO) nanostructures: nanorods, nanowalls and nanoflowers. The structures are produced at high densities with a high degree of uniformity on Al-coated SiO2 substrates without the need for surfactant. Unlike the random distribution of ZnO nanoflowers reported in previous studies, the proposed method makes it possible to control the distribution of these structures along the grooves created by altering the growth rate of ZnO nanorods and nanowalls. The number of ZnO nanoflowers created in this manner depends on the concentration of solution (HMT: hexamethylenetetramine) and reaction time. Measurements of cathodoluminescence (CL), X-ray diffractometry (XRD), and SEM-EDS confirm that the resulting structures are pure ZnO with good crystallinity. We also investigated the optical properties of these ZnO nanostructures and propose a possible growth mechanism.
引用
收藏
页码:592 / 597
页数:6
相关论文
共 32 条
  • [1] High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates
    Bai, Suo
    Wu, Weiwei
    Qin, Yong
    Cui, Nuanyang
    Bayerl, Dylan J.
    Wang, Xudong
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (23) : 4464 - 4469
  • [2] Hydrothermal growth of ZnO nanostructures
    Baruah, Sunandan
    Dutta, Joydeep
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2009, 10 (01)
  • [3] Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy
    Baxter, Jason B.
    Schmuttenmaer, Charles A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) : 25229 - 25239
  • [4] Deposition of Preferred-Orientation ZnO Films on the Lead-Free Ceramic Substrates and its Effects on the Properties of Surface Acoustic Wave Devices
    Chan, I-Hao
    Chang, Jen-Chuan
    Sun, Chieh-Tze
    Houng, Mau-Phon
    Chu, Sheng-Yuan
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2012, 95 (07) : 2254 - 2259
  • [5] Oriented growth of ZnO nanostructures on Si and Al substrates
    Cheng, J. P.
    Zhang, X. B.
    Luo, Z. Q.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2008, 202 (19) : 4681 - 4686
  • [6] Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications
    Feng, Jiu-Ju
    Liao, Qi-Chen
    Wang, Ai-Jun
    Chen, Jian-Rong
    [J]. CRYSTENGCOMM, 2011, 13 (12): : 4202 - 4210
  • [7] Studies on the PEG-Assisted Hydrothermal Synthesis and Growth Mechanism of ZnO Microrod and Mesoporous Microsphere Arrays on the Substrate
    Feng, Yingjie
    Zhang, Mei
    Guo, Min
    Wang, Xidong
    [J]. CRYSTAL GROWTH & DESIGN, 2010, 10 (04) : 1500 - 1507
  • [8] ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction
    Gao, S. Y.
    Li, H. D.
    Yuan, J. J.
    Li, Y. A.
    Yang, X. X.
    Liu, J. W.
    [J]. APPLIED SURFACE SCIENCE, 2010, 256 (09) : 2781 - 2785
  • [9] Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy
    Heo, YW
    Varadarajan, V
    Kaufman, M
    Kim, K
    Norton, DP
    Ren, F
    Fleming, PH
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (16) : 3046 - 3048
  • [10] Wet-chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film
    Ku, Chen-Hao
    Yang, Hung-Hsien
    Chen, Guan-Ren
    Wu, Jih-Jen
    [J]. CRYSTAL GROWTH & DESIGN, 2008, 8 (01) : 283 - 290