Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations

被引:0
作者
Dai, Yan-Xia [1 ]
Yan, Ren-Yi [2 ]
Yang, Ai-Li [1 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
[2] Hainan Normal Univ, Sch Econ & Management, Haikou 571158, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Absolute value equations (AVEs); Block-diagonal and anti-block-diagonal splitting (BAS); Minimum residual; Minimum residual BAS (MRBAS) iteration; Convergence analysis; GENERALIZED NEWTON METHOD;
D O I
10.1007/s42967-024-00403-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, by applying the minimum residual technique to the block-diagonal and anti-block-diagonal splitting (BAS) iteration scheme, an iteration method named minimum residual BAS (MRBAS) is proposed to solve a two-by-two block system of nonlinear equations arising from the reformulation of the system of absolute value equations (AVEs). The theoretical analysis shows that the MRBAS iteration method is convergent under suitable conditions. Numerical results demonstrate the feasibility and the effectiveness of the MRBAS iteration method.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Flexible Operator Splitting Methods for Solving Absolute Value Equations
    Chen, Yongxin
    Han, Deren
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [32] A Minimum Residual Based Gradient Iterative Method for a Class of Matrix Equations
    Zheng, Qing-qing
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01): : 17 - 34
  • [33] A Minimum Residual Based Gradient Iterative Method for a Class of Matrix Equations
    Qing-qing Zheng
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 17 - 34
  • [34] A New Efficient Method for Absolute Value Equations
    Guo, Peng
    Iqbal, Javed
    Ghufran, Syed Muhammad
    Arif, Muhammad
    Alhefthi, Reem K.
    Shi, Lei
    [J]. MATHEMATICS, 2023, 11 (15)
  • [35] A new two-step iterative technique for efficiently solving absolute value equations
    Gul, Nisar
    Chen, Haibo
    Iqbal, Javed
    Shah, Rasool
    [J]. ENGINEERING COMPUTATIONS, 2024, 41 (05) : 1272 - 1284
  • [36] Smoothing techniques in solving non-Lipschitz absolute value equations
    Yilmaz, Nurullah
    Sahiner, Ahmet
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (04) : 867 - 879
  • [37] Iterative Schemes Induced by Block Splittings for Solving Absolute Value Equations
    Shams, Nafiseh Nasseri
    Jahromi, Alireza Fakharzadeh
    Beik, Fatemeh Panjeh Ali
    [J]. FILOMAT, 2020, 34 (12) : 4171 - 4188
  • [38] NEW NOVEL ITERATIVE SCHEMES FOR SOLVING GENERAL ABSOLUTE VALUE EQUATIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 13 (04): : 15 - 29
  • [39] A modified multivariate spectral gradient algorithm for solving absolute value equations
    Yu, Zhensheng
    Li, Lin
    Yuan, Yue
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 121
  • [40] Exploring two new iterative methods for solving absolute value equations
    Ali, Rashid
    Zhang, Zhao
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 6245 - 6258