Incorporating landscape ecological approach in machine learning classification for agricultural land-use mapping based on a single date imagery

被引:2
作者
Danoedoro, Projo [1 ]
Widayani, Prima [1 ]
Hidayati, Iswari Nur [1 ]
Kartika, Candra Sari Djati [1 ]
Alfani, Fitria [1 ]
机构
[1] Univ Gadjah Mada, Dept Geog Informat Sci, Remote Sensing Lab, Fac Geog, Yogyakarta, Indonesia
关键词
Landscape ecological approach; machine learning; random decision forest; crop rotation; single date imagery; RANDOM FORESTS; COVER;
D O I
10.1080/10106049.2024.2356844
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land-use maps containing crop rotational information are very important in land management and physical planning. Such maps are usually generated using multitemporal data. Although recent technology allows analysts to process multitemporal information effectively, the use of single date imagery for such purpose is more efficient. This study aimed to map detailed agricultural land-use with crop rotational information based on a single date Landsat 8 imagery and SRTM-derived terrain attributes. A landscape ecological approach assuming the influence of terrain characteristics on the existence of crop and land-use types was implemented in multisource classification using random decision forest (RDF) machine learning algorithm. The use of seven optical bands and five terrain attributes could provide a land-use map at 88.03% accuracy, compared to seven optical bands only that generate 82.45% accuracy. These results are also better than those of maximum likelihood. The most influential variables in the achieved accuracy are elevation and thermal band.
引用
收藏
页数:20
相关论文
共 48 条
  • [1] Classification of land use/land cover using artificial intelligence (ANN-RF)
    Alshari, Eman A.
    Abdulkareem, Mohammed B.
    Gawali, Bharti W.
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 5
  • [2] Badan Standardisasi Nasional (BSN), 2014, Standar Nasional Indonesia 7645-1 tahun 2014 untuk Klasifikasi Penutup Lahan Bagian I: skala Kecil dan Menengah
  • [3] Biau G, 2012, J MACH LEARN RES, V13, P1063
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Breiman L., 2005, Random forests
  • [6] Chavez PS, 1996, PHOTOGRAMM ENG REM S, V62, P1025
  • [7] Congalton R.G., 2019, Assessing the accuracy of remotely sensed data: principles and practices
  • [8] Land Cover Mapping from Remotely Sensed and Auxiliary Data for Harmonized Official Statistics
    Costa, Hugo
    Almeida, Diana
    Vala, Francisco
    Marcelino, Filipe
    Caetano, Mario
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (04)
  • [9] Danoedoro P., 1998, Indones J Geogr, V30, P11
  • [10] Danoedoro P., 2022, Int. Journ. Advanced Sc., Eng., V12, P881, DOI [10.18517/ijaseit.12.3.12514, DOI 10.18517/IJASEIT.12.3.12514]