An attention enhanced dual graph neural network for mesh denoising

被引:0
|
作者
Wang, Mengxing [1 ]
Feng, Yi-Fei [1 ]
Lyu, Bowen [1 ]
Shen, Li -Yong [1 ]
Yuan, Chun -Ming [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesh denoising; Graph neural network; Attention mechanism; Feature preserving;
D O I
10.1016/j.cagd.2024.102307
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mesh denoising is a crucial research topic in geometric processing, as it is widely used in reverse engineering and 3D modeling. The main objective of denoising is to eliminate noise while preserving sharp features. In this paper, we propose a novel denoising method called Attention Enhanced Dual Mesh Denoise (ADMD), which is based on a graph neural network and attention mechanism. ADMD simulates the two -stage denoising method by using a new training strategy and total variation (TV) regular term to enhance feature retention. Our experiments have demonstrated that ADMD can achieve competitive or superior results to state-of-the-art methods for noise CAD models, non -CAD models, and real -scanned data. Moreover, our method can effectively handle large mesh models with different -scale noisy situations and prevent model shrinking after mesh denoising.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] ExGAT: Context extended graph attention neural network
    Quan, Pei
    Zheng, Lei
    Zhang, Wen
    Xiao, Yang
    Niu, Lingfeng
    Shi, Yong
    NEURAL NETWORKS, 2025, 181
  • [42] Dual Attention Convolutional Neural Network Based on Adaptive Parametric ReLU for Denoising ECG Signals with Strong Noise
    He, Zixiao
    Liu, Xinwen
    He, Hao
    Wang, Huan
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 779 - 782
  • [43] Attention-Aware Heterogeneous Graph Neural Network
    Zhang, Jintao
    Xu, Quan
    BIG DATA MINING AND ANALYTICS, 2021, 4 (04) : 233 - 241
  • [44] A Graph Neural Network with Spatial Attention for Emotion Analysis
    Chen, Tian
    Li, Lubao
    Yuan, Xiaohui
    COGNITIVE COMPUTATION, 2025, 17 (01)
  • [45] Text Classification with Attention Gated Graph Neural Network
    Zhaoyang Deng
    Chenxiang Sun
    Guoqiang Zhong
    Yuxu Mao
    Cognitive Computation, 2022, 14 : 1464 - 1473
  • [46] Text Classification with Attention Gated Graph Neural Network
    Deng, Zhaoyang
    Sun, Chenxiang
    Zhong, Guoqiang
    Mao, Yuxu
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1464 - 1473
  • [47] Graph Attention Neural Network Distributed Model Training
    Esmaeilzadeh, Armin
    Kambar, Mina Esmail Zadeh Nojoo
    Heidari, Maryam
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 447 - 452
  • [48] Disentangled Hierarchical Attention Graph Neural Network for Recommendation
    He, Weijie
    Ouyang, Yuanxin
    Peng, Keqin
    Rong, Wenge
    Xiong, Zhang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 415 - 426
  • [49] Attention-Aware Heterogeneous Graph Neural Network
    Jintao Zhang
    Quan Xu
    Big Data Mining and Analytics, 2021, 4 (04) : 233 - 241
  • [50] An Attention Enhanced Graph Convolutional Network for Semantic Segmentation
    Chen, Ao
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 734 - 745