Effect of hydrogen sources toward the CO2 photoreduction on boron decorated crystalline carbon nitride

被引:3
作者
Kong, Yuehua [1 ]
Pan, Junhui [1 ]
Li, Yi [1 ,2 ]
Zhang, Yongfan [1 ,2 ]
Lin, Wei [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
DFT; CO; 2; reduction; Lewis acid-base pairs; Quasi-MvK; Acceptance-donation" process; ELASTIC BAND METHOD; REDUCTION; ENERGY; CATALYSTS; DESIGN;
D O I
10.1016/j.apsusc.2024.160426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic CO2 conversion to industrial fuels is considered an effective measure to solve energy and environmental problems. Presently, Catalysts for CO2 reduction reaction (CO2RR) are mostly confined to metal-based materials, but non-metal materials are less explored. We decorate the highly crystalline carbon nitride, i.e., poly (triazine) imides (PTI), with non-metallic boron (B) to obtain two B/PTI catalysts: Bi/PTI with B being deposited into the six-fold cavity of the PTI, and Bs/PTI with B substituting for C in PTI. For CO2RR, Bi/PTI follows a quasi Mars-van Krevelen process, but the high exposure of Bi results in an overly strong interaction with intermediates, inhibiting the reactivity. In contrast, Bs/PTI enhances the binding with intermediates by introducing Lewis acidbase pairs (B-N), which reduce the ring conjugation effect and induce the enrichment of electrons at the pyridine N. Hence, CO2 reduction with the adsorbed H* (Ha) hydrogenation mechanism in Bs/PTI has a significant reactivity.
引用
收藏
页数:7
相关论文
共 59 条
[1]   Transforming Photocatalytic g-C3N4/MoSe2 into a Direct Z-Scheme System via Boron-Doping: A Hybrid DFT Study [J].
Ai, Changzhi ;
Li, Jin ;
Yang, Liang ;
Wang, Zhipeng ;
Wang, Zhao ;
Zeng, Yamei ;
Deng, Rong ;
Lin, Shiwei ;
Wang, Cai-Zhuang .
CHEMSUSCHEM, 2020, 13 (18) :4985-4993
[2]   Warming caused by cumulative carbon emissions towards the trillionth tonne [J].
Allen, Myles R. ;
Frame, David J. ;
Huntingford, Chris ;
Jones, Chris D. ;
Lowe, Jason A. ;
Meinshausen, Malte ;
Meinshausen, Nicolai .
NATURE, 2009, 458 (7242) :1163-1166
[3]   Electrochemical CO2 Reduction: Classifying Cu Facets [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
ACS CATALYSIS, 2019, 9 (09) :7894-7899
[4]   Dipole correction for surface supercell calculations [J].
Bengtsson, L .
PHYSICAL REVIEW B, 1999, 59 (19) :12301-12304
[5]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[6]   S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction [J].
Chen, Gongjie ;
Zhou, Ziruo ;
Li, Bifang ;
Lin, Xiahui ;
Yang, Can ;
Fang, Yuanxing ;
Lin, Wei ;
Hou, Yidong ;
Zhang, Guigang ;
Wang, Sibo .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 :103-112
[7]   Phase junction crystalline carbon nitride nanosheets modified with CdS nanoparticles for photocatalytic CO2 reduction [J].
Chen, Gongjie ;
Wei, Fen ;
Zhou, Ziruo ;
Su, Bo ;
Yang, Can ;
Lu, Xue Feng ;
Wang, Sibo ;
Wang, Xinchen .
SUSTAINABLE ENERGY & FUELS, 2023, 7 (02) :381-388
[8]   Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction [J].
Chen, Zhe ;
Zhao, Jingxiang ;
Cabrera, Carlos R. ;
Chen, Zhongfang .
SMALL METHODS, 2019, 3 (06)
[9]   Implicit solvation models: Equilibria, structure, spectra, and dynamics [J].
Cramer, CJ ;
Truhlar, DG .
CHEMICAL REVIEWS, 1999, 99 (08) :2161-2200
[10]   How does the B,F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C3N4? [J].
Ding, Kaining ;
Wen, Lili ;
Huang, Mengyue ;
Zhang, Yongfan ;
Lu, Yunpeng ;
Chen, Zhongfang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (28) :19217-19226