Counting invariant curves: A theory of Gopakumar-Vafa invariants for Calabi-Yau threefolds with an involution

被引:0
作者
Bryan, Jim [1 ]
Pietromonaco, Stephen [1 ,2 ]
机构
[1] Univ British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
来源
ALGEBRAIC GEOMETRY | 2020年 / 11卷 / 02期
关键词
enumerative geometry; Gopakumar-Vafa invariants; Pandharipande-Thomas invariants; modular forms; Calabi-Yau threefolds; orbifolds; K3; surfaces;
D O I
10.14231/AG-2024-008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of Gopakumar-Vafa (GV) invariants for a Calabi-Yau threefold (CY3) X which is equipped with an involution & imath; preserving the holomorphic volume form. We define integers n g,h ( beta ) which give a virtual count of the number of genus g curves C on X , in the class beta E H 2 ( X ), which are invariant under & imath; , and whose quotient C/& imath; has genus h . We give two definitions of n g,h ( beta ) which we conjecture to be equivalent: one in terms of a version of Pandharipande-Thomas theory and one in terms of a version of Maulik-Toda theory. We compute our invariants and give evidence for our conjecture in several cases. In particular, we compute our invariants when X = S x C , where S is an Abelian surface with & imath; ( a ) = - a or a K 3 surface with a symplectic involution (a Nikulin K 3 surface). For these cases, we give formulas for our invariants in terms of Jacobi modular forms.
引用
收藏
页码:256 / 289
页数:34
相关论文
共 32 条
  • [1] Barth W. P., 2004, ERGEBNISSE MATH IHRE, V4, DOI [10.1007/978-3-642-57739-0, DOI 10.1007/978-3-642-57739-0]
  • [2] MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations
    Bayer, Arend
    Macri, Emanuele
    [J]. INVENTIONES MATHEMATICAE, 2014, 198 (03) : 505 - 590
  • [3] A proof of the Donaldson-Thomas crepant resolution conjecture
    Beentjes, Sjoerd Viktor
    Calabrese, John
    Rennemo, Jorgen Vold
    [J]. INVENTIONES MATHEMATICAE, 2022, 229 (02) : 451 - 562
  • [4] Donaldson-Thomas type invariants via microlocal geometry
    Behrend, Kai
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (03) : 1307 - 1338
  • [5] SYMMETRIES AND STABILIZATION FOR SHEAVES OF VANISHING CYCLES
    Brav, C.
    Bussi, V.
    Dupont, D.
    Joyce, D.
    Szendroi, B.
    Schuermann, Joerg
    [J]. JOURNAL OF SINGULARITIES, 2015, 11 : 85 - 151
  • [6] Stability conditions on K3 surfaces
    Bridgeland, Tom
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) : 241 - 291
  • [7] HALL ALGEBRAS AND CURVE-COUNTING INVARIANTS
    Bridgeland, Tom
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (04) : 969 - 998
  • [8] Curve counting on abelian surfaces and threefolds
    Bryan, Jim
    Oberdieck, Georg
    Pandharipande, Rahul
    Yin, Qizheng
    [J]. ALGEBRAIC GEOMETRY, 2018, 5 (04): : 398 - 463
  • [9] The orbifold topological vertex
    Bryan, Jim
    Cadman, Charles
    Young, Ben
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (01) : 531 - 595
  • [10] THE DECOMPOSITION THEOREM, PERVERSE SHEAVES AND THE TOPOLOGY OF ALGEBRAIC MAPS
    de Cataldo, Mark Andrea A.
    Mgliorini, Luca
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (04) : 535 - 633