Synthesis and Characterization of PolyHIPE-Gellan Gum Material with Tunable Macroporosity for Tissue Engineering Applications

被引:5
作者
Akbari, Sweeta [1 ,2 ]
Kroon, Mart [2 ]
Parihar, Vijay Singh [2 ]
Koivisto, Janne T. [2 ]
Hannula, Markus [1 ]
Kellomaki, Minna [2 ]
Hyttinen, Jari [1 ]
机构
[1] Tampere Univ, Computat Biophys & Imaging Grp, Fac Med & Hlth Technol, Tampere 33720, Finland
[2] Tampere Univ, Fac Med & Hlth Technol, Biomat & Tissue Engn Grp, Tampere 33720, Finland
关键词
POROUS SCAFFOLDS; MECHANICAL-PROPERTIES; CELL-CULTURE; POLYMERIZATION; IMAGE; PARAMETERS; HYDROGELS; POLYMERS; ADHESION; RELEASE;
D O I
10.1021/acs.macromol.4c00064
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymerized high internal phase emulsions (polyHIPEs) were combined with gellan gum (GG) in an innovative approach. Four GG concentrations in polyHIPEs (P-GG 0%, P-GG 0.1%, P-GG 0.5%, and P-GG 1%) were explored for their impact on polyHIPE materials. The resulting macroporous polyHIPE-GG (P-GG) scaffolds exhibited up to 95% porosity and remarkable interconnectivity. Elevating GG concentration correlated with larger pore sizes, increased hydrophilicity, and degradability. Scanning electron microscopy (SEM) and X-ray microcomputed tomography provided insights into the structural influence of GG on polyHIPE materials. Pore sizes ranged from 32 to 1036 mu m. In vitro Live/Dead assay confirmed the cytocompatibility of these scaffolds with human fibroblast cells, showcasing their potential for mimicking cartilage and bone tissue structures, promoting cell activities, nutrient exchange, supporting various cell lines, and facilitating vascularization.
引用
收藏
页码:6295 / 6308
页数:14
相关论文
共 50 条
[21]   A native extracellular matrix material for tissue engineering applications: Characterization of pericardial fluid [J].
Sonmezer, Dilek ;
Latifoglu, Fatma ;
Toprak, Guler ;
Baran, Munevver .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2023, 111 (09) :1629-1639
[22]   Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering [J].
Vieira, Silvia ;
Morais, Alain da Silva ;
Garet, Elina ;
Silva-Correia, Joana ;
Reis, Rui L. ;
Gonzalez-Fernandez, Africa ;
Miguel Oliveira, J. .
ACTA BIOMATERIALIA, 2019, 93 :74-85
[23]   Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means [J].
Douglas, Timothy E. L. ;
Krawczyk, Grzegorz ;
Pamula, Elzbieta ;
Declercq, Heidi A. ;
Schaubroeck, David ;
Bucko, Miroslaw M. ;
Balcaen, Lieve ;
Van Der Voort, Pascal ;
Bliznuk, Vitaliy ;
van den Vreken, Natasja M. F. ;
Dash, Mamoni ;
Detsch, Rainer ;
Boccaccini, Aldo R. ;
Vanhaecke, Frank ;
Cornelissen, Maria ;
Dubruel, Peter .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 10 (11) :938-954
[24]   Assessment of chitosan:gum tragacanth cryogels for tissue engineering applications [J].
Demir, Didem ;
Ugurlu, Muge Asik ;
Ceylan, Seda ;
Sakim, Burcu ;
Genc, Rukan ;
Bolgen, Nimet .
POLYMER INTERNATIONAL, 2022, 71 (09) :1109-1118
[25]   Synthesis and characterization of double network hydrogel based on gellan-gum for drug delivery [J].
Pourjalili, N. ;
Marandi, G. Bagheri ;
Kurdtabar, M. ;
Bardajee, G. Rezanejade .
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2022, 59 (08) :537-549
[26]   Synthesis and characterization of Gellan gum-based hydrogels for the delivery of anticancer drug etoposide [J].
Saruchi ;
Kumar, Vaneet ;
Mittal, Hemant ;
Ansar, Sabah .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278
[27]   Grafting of Acrylamide and Trim ethylolpropane Triglycidyl Ether onto the Gellan Gum: Synthesis and Characterization [J].
Xiong Yao ;
Zheng Mei-Xia ;
Cai Kun-Qia ;
Zhang Yi ;
Zhang Long-Tao ;
Zheng Bao-Dong .
CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37 (08) :1339-1348
[28]   Gum based 3D composite scaffolds for bone tissue engineering applications [J].
Anandan, Dhivyaa ;
Madhumathi, G. ;
Nambiraj, N. Arunai ;
Jaiswal, Amit K. .
CARBOHYDRATE POLYMERS, 2019, 214 (62-70) :62-70
[29]   Synthesis and Characterization of Degradable Polar Hydrophobic Ionic Polyurethane Scaffolds for Vascular Tissue Engineering Applications [J].
Sharifpoor, Soroor ;
Labow, Rosalind S. ;
Santerre, J. Paul .
BIOMACROMOLECULES, 2009, 10 (10) :2729-2739
[30]   Porous ovalbumin scaffolds with tunable properties: A resource-efficient biodegradable material for tissue engineering applications [J].
Luo, Baiwen ;
Choong, Cleo .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2015, 29 (06) :903-911