An inerter-based concept of locally resonant fluid-conveying pipe

被引:4
|
作者
Sciutteri, Silvia [1 ]
Russillo, Andrea Francesco [2 ]
Santoro, Roberta [1 ]
Ricciardi, Giuseppe [1 ]
Failla, Giuseppe [2 ]
机构
[1] Univ Messina, Dept Engn, Messina, Italy
[2] Univ Reggio Calabria, Dept Civil Environm Energy & Mat Engn DICEAM, Via R Zehender,Local Feo Vito, I-89122 Reggio Di Calabria, Italy
关键词
Fluid-conveying pipe; Inerter; Local resonance; Band gap; Dynamic-stiffness method; MASS-DAMPER-INERTER; WAVE-PROPAGATION; VIBRATION ABSORBERS; FORCED VIBRATION; DYNAMIC-ANALYSIS; BAND-GAP; BEAMS; REDUCTION; PLATES; ABSORPTION;
D O I
10.1016/j.euromechsol.2024.105316
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Preventing damage or failure caused by vibrations in periodic fluid -conveying pipes needs appropriate mitigation strategies. This paper proposes a novel concept of locally resonant fluid -conveying pipe resting on periodically spaced inerter-based resonant supports, each including an inerter and linear springs. On adopting a Timoshenko beam model for the pipe, two types of inerter-based resonant supports are investigated, differing by the arrangement of the internal components, i.e., inerter and springs. For both types, elastic wave dispersion analyses of the infinite pipe demonstrate the existence of two low -frequency band gaps in the frequency response. The second band gap, caused by local resonance, exhibits better attenuation over a relevant part of its frequency range; its lower/upper edge frequencies and amplitude may be suitably changed depending on the parameters of the inerter-based resonant supports, and very considerable amplitudes can be obtained thanks to the large inertia effects warranted by the grounded inerter. The influence on the band gaps of key parameters such as fluid velocity and ratio of fluid mass to total pipe mass is assessed. Moreover, the effect of damping is considered, assuming a Kelvin-Voigt viscoelastic behavior for the pipe material and including viscous dashpots in parallel with the springs within the inerter-based resonant supports. An original exact dynamic -stiffness method is formulated for computational purposes, targeting wave dispersion analysis of the infinite pipe as well as frequency -domain analysis of the finite pipe. In particular, the main novelty is the derivation of the exact dynamic -stiffness matrix and exact load vector of the unit cell of the Timoshenko pipe with Kelvin-Voigt viscoelastic behavior. Remarkably, the transmittance of the finite pipe confirms the predictions from wave dispersion analysis of the infinite pipe and substantiates the effectiveness of the proposed concept of locally resonant fluid -conveying pipe.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Impact vibration properties of locally resonant fluid-conveying pipes*
    Hu, Bing
    Zhu, Fu-Lei
    Yu, Dian-Long
    Liu, Jiang-Wei
    Zhang, Zhen-Fang
    Zhong, Jie
    Wen, Ji-Hong
    CHINESE PHYSICS B, 2020, 29 (12)
  • [2] Non-dimensional analysis of the bandgap formation in a locally resonant metamaterial pipe conveying fluid
    Fernandes, R.
    El-Borgi, S.
    Yazbeck, R.
    Boyd, J. G.
    Lagoudas, D. C.
    APPLIED MATHEMATICAL MODELLING, 2022, 106 : 241 - 258
  • [3] Ultra-wide low-frequency band gap in locally-resonant plates with tunable inerter-based resonators
    Russillo, Andrea Francesco
    Failla, Giuseppe
    Alotta, Gioacchino
    APPLIED MATHEMATICAL MODELLING, 2022, 106 : 682 - 695
  • [4] Energy harvesting of a fluid-conveying piezoelectric pipe
    Lu, Ze-Qi
    Chen, Jie
    Ding, Hu
    Chen, Li-Qun
    APPLIED MATHEMATICAL MODELLING, 2022, 107 : 165 - 181
  • [5] Forced Vibration Analysis of Fluid-conveying Pipe with Elastic Supports
    Zhao Q.
    Sun Z.
    Chai X.
    Yu Y.
    2017, Chinese Mechanical Engineering Society (53): : 186 - 191
  • [6] Flexural Vibration Band Gap in a Periodic Fluid-Conveying Pipe System Based on the Timoshenko Beam Theory
    Yu, Dianlong
    Wen, Jihong
    Zhao, Honggang
    Liu, Yaozong
    Wen, Xisen
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2011, 133 (01):
  • [7] Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
    Kjolsing, Eric J.
    Todd, Michael D.
    JOURNAL OF SOUND AND VIBRATION, 2017, 394 : 575 - 592
  • [8] Temperature modulation of the vibrational responses of a flexible fluid-conveying pipe
    Adelaja, Adekunle O.
    OPEN ENGINEERING, 2013, 3 (04): : 740 - 749
  • [9] Vibration of fluid-conveying pipe with nonlinear supports at both ends
    Sha Wei
    Xiong Yan
    Xin Fan
    Xiaoye Mao
    Hu Ding
    Liqun Chen
    Applied Mathematics and Mechanics, 2022, 43 : 845 - 862
  • [10] Vibration of fluid-conveying pipe with nonlinear supports at both ends
    Wei, Sha
    Yan, Xiong
    Fan, Xin
    Mao, Xiaoye
    Ding, Hu
    Chen, Liqun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2022, 43 (06) : 845 - 862